Effect of Stable and Metastable Phase Microstructures on Mechanical Properties of Ti-33Nb Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Phase Constituent of Ti-33Nb Alloys
3.2. Microstructure of Ti-33Nb Alloys
3.3. Nanoindentation of Ti-33Nb Alloys
4. Conclusions
- (1)
- The microstructure analysis indicates that the WQ specimens, subjected to a higher cooling rate, consist predominantly of β and α″ phases, whereas the FC specimens, cooled at a slower rate, are characterized by the presence of β and α phases.
- (2)
- The nanoindentation test results reveal that the hardness of the FC specimens is significantly lower than that of the WQ specimens, primarily due to the presence of a substantial volume fraction of α phases in the FC specimens. Furthermore, the higher elastic modulus observed in the WQ specimens compared to the FC specimens can be attributed to the formation of the ω phase in the WQ specimens.
- (3)
- The indentation depth recovery ratio (ηh) and work recovery ratio (ηw) were derived from the analysis of the P-h curves. The findings demonstrate that the superelastic behavior of the water-quenched (WQ) specimens is significantly enhanced compared to that of the furnace-cooled (FC) specimens. Specifically, the H/Er and ratios of the WQ specimens were determined to be 0.0282 and 0.0030 GPa, respectively. These results suggest that the WQ specimens exhibit superior wear resistance and a higher resistance to plastic deformation relative to both the FC specimens and commercially pure titanium (cp-Ti).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sidhu, S.S.; Singh, H.; Gepreel, M.A.H. A review on alloy design, biological response, and strengthening of β-titanium alloys as biomaterials. Mater. Sci. Eng. C 2021, 121, 111661. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.J.; Deng, Y.; Zheng, Y.F.; Li, Y.L.; Zhang, R.R.; Lv, Y.L.; Zhao, Q.; Wei, S.C. Characterization, corrosion behavior, cellular response and bone tissue compatibility of titanium-niobium alloy with low Young’s modulus. Mater. Sci. Eng. C 2016, 59, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Mathebula, C.; Matizamhuka, W.; Bolokang, A.S. Effect of Nb content on phase transformation, microstructure of the sintered and heat-treated Ti (10–25) wt.% Nb alloys. Int. J. Adv. Manuf. Technol. 2020, 108, 23–34. [Google Scholar] [CrossRef]
- Niinomi, M.; Nakai, M.; Hieda, J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012, 8, 3888–3903. [Google Scholar] [CrossRef]
- Chaves, J.M.; Florencio, O.; Silva, P.S.; Marques, P.W.B.; Schneider, S.G. Anelastic relaxation associated to phase transformations and interstitial atoms in the Ti-35Nb-7Zr alloy. J. Alloys Compd. 2014, 616, 420–425. [Google Scholar] [CrossRef]
- Abdel-Hady Gepreel, M.; Niinomi, M. Biocompatibility of Ti-alloys for long-term implantation. J. Mech. Behav. Biomed. 2013, 20, 407–415. [Google Scholar] [CrossRef]
- Pesode, P.; Barve, S. A review—Metastable β titanium alloy for biomedical applications. J. Eng. Appl. Sci. 2023, 70, 25. [Google Scholar] [CrossRef]
- Majumdar, P.; Singh, S.B.; Chakraborty, M. The role of heat treatment on microstructure and mechanical properties of Ti-13Zr-13Nb alloy for biomedical load bearing applications. J. Mech. Behav. Biomed. 2011, 4, 1132–1144. [Google Scholar] [CrossRef]
- Bahl, S.; Suwas, S.; Chatterjee, K. Comprehensive review on alloy design, processing, and performance of β Titanium alloys as biomedical materials. Int. Mater. Rev. 2021, 66, 114–139. [Google Scholar] [CrossRef]
- Abd-Elaziem, W.; Darwish, M.A.; Hamada, A.; Daoush, W.M. Titanium-Based alloys and composites for orthopedic implants Applications: A comprehensive review. Mater. Des. 2024, 241, 112850. [Google Scholar] [CrossRef]
- Banerjee, D.; Williams, J.C. Perspectives on Titanium Science and Technology. Acta Mater. 2013, 61, 844–879. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater. Sci. Eng. C 2019, 102, 844–862. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Miyazaki, S. Martensitic transformation and superelastic properties of Ti-Nb base alloys. Mater. Trans. 2015, 56, 625–634. [Google Scholar] [CrossRef]
- Miyazaki, S.; Kim, H.Y.; Hosoda, H. Development and characterization of Ni-free Ti-base shape memory and superelastic alloys. Mater. Sci. Eng. A 2006, 438, 18–24. [Google Scholar] [CrossRef]
- Guo, Y.; Georgarakis, K.; Yokoyama, Y.; Yavari, A. On the mechanical properties of TiNb based alloys. J. Alloys Compd. 2013, 571, 25–30. [Google Scholar] [CrossRef]
- Moffat, D.; Kattner, U. The stable and metastable Ti-Nb phase diagrams. Metall. Trans. A 1988, 19, 2389–2397. [Google Scholar] [CrossRef]
- Bönisch, M.; Calin, M.; Giebeler, L.; Helth, A.; Gebert, A.; Skrotzki, W.; Eckert, J. Composition-dependent magnitude of atomic shuffles in Ti-Nb martensites. J. Appl. Crystallogr. 2014, 47, 1374–1379. [Google Scholar] [CrossRef]
- Bertrand, E.; Castany, P.; Gloriant, T. Investigation of the martensitic transformation and the damping behavior of a superelastic Ti-Ta-Nb alloy. Acta Mater. 2013, 61, 511–518. [Google Scholar] [CrossRef]
- Kim, H.Y.; Satoru, H.; Kim, J.I.; Hosoda, H.; Miyazaki, S. Mechanical properties and shape memory behavior of Ti-Nb alloys. Mater. Trans. 2004, 45, 2443–2448. [Google Scholar] [CrossRef]
- Kim, H.Y.; Ikehara, Y.; Kim, J.I.; Hosoda, H.; Miyazaki, S. Martensitic transformation, shape memory effect and superelasticity of Ti-Nb binary alloys. Acta Mater. 2006, 54, 2419–2429. [Google Scholar] [CrossRef]
- Tarzimoghadam, Z.; Sandlöbes, S.; Pradeep, K.G.; Raabe, D. Microstructure design and mechanical properties in a near-α Ti-4Mo alloy. Acta Mater. 2015, 97, 291–304. [Google Scholar] [CrossRef]
- Ehtemam-Haghighi, S.; Liu, Y.J.; Cao, G.H.; Zhang, L.C. Phase transition, microstructural evolution and mechanical properties of Ti-Nb-Fe alloys induced by Fe addition. Mater. Des. 2016, 97, 279–286. [Google Scholar] [CrossRef]
- Yang, J.; Xu, J.; Zhang, G.P. Deformation and damage behavior of colonies in a small-sized α/β Ti alloy. Scr. Mater. 2013, 68, 715–718. [Google Scholar] [CrossRef]
- GB/T 13298-2015; Inspection Methods of Microstructure for Metals. National Standard of the People’s Republic of China: Beijing, China, 2021.
- Ni, W.Y.; Cheng, Y.T.; Grummon, D.S. Microscopic shape memory and superelastic effects under complex loading conditions. Surf. Coat. Tech. 2004, 177, 512–517. [Google Scholar] [CrossRef]
- Moffat, D.; Larbalestier, D. The compctition between martensite and omega in quenched Ti-Nb alloys. Metall. Trans. A 1988, 19, 1677–1686. [Google Scholar] [CrossRef]
- Talbot, C.E.P.; Church, N.L.; Hildyard, E.M.; Connor, L.D.; Miller, J.R.; Jones, N.G. On the stability and formation of the α” and ω phases in Ti-Nb alloys upon cooling. Acta Mater. 2024, 262, 119409. [Google Scholar] [CrossRef]
- Afonso, C.R.M.; Aleixo, G.T.; Ramirez, A.J.; Caram, R. Influence of cooling rate on microstructure of Ti-Nb alloy for orthopedic implants. Mater. Sci. Eng. C 2007, 27, 908–913. [Google Scholar] [CrossRef]
- Chai, Y.W.; Kim, H.Y.; Hosoda, H.; Miyazaki, S. Self-accommodation in Ti-Nb shape memory alloys. Acta Mater. 2009, 57, 4054–4064. [Google Scholar] [CrossRef]
- Jovanovic, M.T.; Tadic, S.; Zec, S.; Miskovic, Z.; Bobic, I. The effect of annealing temperatures and cooling rates on microstructure and mechanical properties of investment cast Ti-6Al-4V alloy. Mater. Des. 2006, 27, 192–199. [Google Scholar] [CrossRef]
- Zhang, X.B.; Wu, J.L.; Li, N.; Pennycook, S.J.; Sun, J. Revealing the displacive and diffusional phase transformations in a low-modulus Ti-12Nb alloy. Mater. Charact. 2024, 216, 114223. [Google Scholar] [CrossRef]
- Dar, R.D.; Chen, Y. Nanoindentation studies of small-scale martensitic transformations and ductile precipitate effects in dual-phase polycrystalline shape memory alloys. Acta Mater. 2015, 91, 112–127. [Google Scholar] [CrossRef]
- Teixeira, J.; Maréchal, D.; Wimpory, R.C.; Denis, S.; Lefebvre, F.; Frappier, R. Formation of residual stresses during quenching of Ti17 and Ti-6Al-4V alloys: Influence of phase transformations. Mater. Sci. Eng. A 2022, 832, 142456. [Google Scholar] [CrossRef]
- Pilz, S.; Hariharan, A.; Günther, F.; Zimmermann, M.; Gebert, A. Influence of isothermal omega precipitation aging on deformation mechanisms and mechanical properties of a β-type Ti-Nb alloy. J. Alloys Compd. 2023, 930, 167309. [Google Scholar] [CrossRef]
- Boenisch, M.; Calin, M.; van Humbeeck, J.; Skrotzki, W.; Eckert, J. Factors influencing the elastic moduli, reversible strains and hysteresis loops in martensitic Ti-Nb alloys. Mater. Sci. Eng. C 2015, 48, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Héraud, L.; Castany, P.; Lailllé, D.; Gloriant, T. In situ synchrotron X-ray diffraction of the martensitic transformation in superelastic Ti-27Nb and NiTi alloys: A comparative study. Mater. Today Proc. 2015, 2, 917–920. [Google Scholar] [CrossRef]
- Xu, J.; Wang, G.D.; Lu, X.L.; Liu, L.L.; Munroe, P.; Xie, Z.H. Mechanical and corrosion-resistant properties of Ti-Nb-Si-N nanocomposite films prepared by a double glow discharge plasma technique. Ceram. Int. 2014, 40, 8621–8630. [Google Scholar] [CrossRef]
- Hynowska, A.; Pellicer, E.; Fornell, J.; González, S.; van Steenberge, N.; Suriñach, S.; Gebert, A.; Calin, M.; Eckert, J.; Baró, M.D.; et al. Nanostructured β-phase Ti–31.0Fe–9.0Sn and sub-μm structured Ti–39.3Nb–13.3Zr–10.7Ta alloys for biomedical applications: Microstructure benefits on the mechanical and corrosion performances. Mater. Sci. Eng. C 2012, 32, 2418–2425. [Google Scholar] [CrossRef]
- Ehtemam-Haghighi, S.; Cao, G.H.; Zhang, L.C. Nanoindentation study of mechanical properties of Ti based alloys with Fe and Ta additions. J. Alloys Compd. 2017, 692, 892–897. [Google Scholar] [CrossRef]
- Musil, J.; Kunc, F.; Zeman, H.; Poláková, H. Relationships between hardness, Young’s modulus and elastic recovery in hard nanocomposite coatings. Surf. Coat. Technol. 2002, 154, 304–313. [Google Scholar] [CrossRef]
Samples | Er (GPa) | H (GPa) | ηh (%) | ηw (%) | H/Er | (GPa) |
---|---|---|---|---|---|---|
WQ | 126.93 | 3.81 | 19.02 | 19.54 | 0.0282 | 0.0030 |
FC | 99.24 | 2.66 | 16.82 | 18.12 | 0.0268 | 0.0019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, S.; Zhu, Y.; Min, N. Effect of Stable and Metastable Phase Microstructures on Mechanical Properties of Ti-33Nb Alloys. Materials 2025, 18, 2351. https://doi.org/10.3390/ma18102351
Fan S, Zhu Y, Min N. Effect of Stable and Metastable Phase Microstructures on Mechanical Properties of Ti-33Nb Alloys. Materials. 2025; 18(10):2351. https://doi.org/10.3390/ma18102351
Chicago/Turabian StyleFan, Shitao, Yingqi Zhu, and Na Min. 2025. "Effect of Stable and Metastable Phase Microstructures on Mechanical Properties of Ti-33Nb Alloys" Materials 18, no. 10: 2351. https://doi.org/10.3390/ma18102351
APA StyleFan, S., Zhu, Y., & Min, N. (2025). Effect of Stable and Metastable Phase Microstructures on Mechanical Properties of Ti-33Nb Alloys. Materials, 18(10), 2351. https://doi.org/10.3390/ma18102351