Research Progress and Application Prospects of Plant Fibers in Geopolymer Concrete: A Review
Abstract
:1. Introduction
2. Interfacial Bonding Between Plant Fibers and Geopolymer Matrix
2.1. Types and Properties of Plant Fibers
2.2. Fiber Surface Treatment
2.2.1. Alkali Treatment
2.2.2. Silane Coupling Agent Treatment
2.2.3. Polymer Coating
2.2.4. Other Surface Treatment Methods
2.3. Geopolymer Matrix Modification Methods
2.4. Microstructural Characteristics of Interfacial Transition Zones (ITZ)
2.5. Methods for Evaluating Interfacial Bonding Properties
3. Mechanical Properties of Plant Fiber-Reinforced Geopolymer Concrete
3.1. Compressive Strength
3.2. Tensile and Flexural Strength
Fiber Type | Matrix | Fiber Dosage | Tensile Strength Enhancement | Flexural Strength Enhancement | Remarks | References |
---|---|---|---|---|---|---|
Sweet Sorghum | FA-based | 2 wt% | ↑ 36% | ↑ 51% | Optimal at 2 wt%, decline at 3 wt% | [75] |
Cotton | FA-based | 0–4.1 wt% (Pre-dried) | - | ↑ 50% (8 → 12 MPa) | Optimal at 2.1 wt%, decline at 2.8 wt% | [83] |
Cotton | FA-based | 0–1 wt% | - | ↑ 12.5% (10.4 → 11.7 MPa) | Optimal at 0.5 wt%, decline beyond 0.5 wt% | [84] |
Pineapple | FA-based | 0–0.5 wt% (10–30 mm length) | - | ↑ from 6.58 MPa to 9.21 MPa | Optimal at 0.5 wt%, dosage at 30 mm | [78] |
Sisal | FA-based | 0–1 vol% | ↑ 73.6% | ↑ 112.9% (3.1 → 6.5 MPa) | Increased strength with content up to 1 vol% | [85] |
Coconut | FA-based | 0–1 vol% | ↑ 15.8% | ↑ 106.5% (3.1 → 6.4 MPa) | Increased strength with content up to 1 vol% | [85] |
Bamboo | MK-based | 1–5 vol% | - | ↑ 151% (3.9 → 9.8 MPa) | Optimal enhancement observed at 3 vol% | [79] |
Pseudo-banana | FA-based | 0.7–2 vol% (5–20 mm length) | ↑ 33% | - | Optimal at 1.4 vol%, dosage at 10 mm | [82] |
Coconut | FA-based | 0–1 vol% | ↑ 34.5% | ↑ 47.0% (4.11 → 6.04 MPa) | Optimal at 0.75 vol% for flexural | [26] |
Kenaf | FA-based | 0–1 vol% | ↑ 50% | ↑ 59.7% (4.93 → 7.87 MPa) | Optimal at 0.75 vol% for flexural | [26] |
Oil Palm | FA-based | 0–1 vol% | ↑ 28.5% | ↑ 45.5% (4.02 → 5.85 MPa) | Optimal at 0.75 vol% for flexural | [26] |
Flax (questionable) | Halloysite | 0–10 wt% | - | ↑ 1107% (5.8 → 70.2 MPa) | Results contested | [81] |
3.3. Toughness and Ductility
3.4. Impact Resistance Properties
4. Durability of Plant Fiber-Reinforced Geopolymer Concrete
4.1. Freeze-Thaw Resistance
4.2. Permeability Resistance
4.3. Carbonation Resistance
4.4. Chemical Resistance
4.5. Drying Shrinkage Behavior
5. Emerging Applications and Future Challenges of Plant Fiber-Reinforced Geopolymer
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GPC | Geopolymer Concrete |
PFRGC | Plant Fiber-Reinforced Geopolymer Concrete |
FRGC | Fiber-Reinforced Geopolymer Concrete |
AAM | Alkali-Activated Materials |
References
- Barbhuiya, S.; Kanavaris, F.; Das, B.B.; Idrees, M. Decarbonising Cement and Concrete Production: Strategies, Challenges and Pathways for Sustainable Development. J. Build. Eng. 2024, 86, 108861. [Google Scholar] [CrossRef]
- International Energy Agency. Low-Carbon Transition in the Cement Industry; IEA Technology Roadmaps; OECD: Paris, France, 2018. [Google Scholar]
- Amran, Y.H.M.; Alyousef, R.; Alabduljabbar, H.; El-Zeadani, M. Clean Production and Properties of Geopolymer Concrete; A Review. J. Clean. Prod. 2020, 251, 119679. [Google Scholar] [CrossRef]
- Unis Ahmed, H.; Mahmood, L.J.; Muhammad, M.A.; Faraj, R.H.; Qaidi, S.M.A.; Hamah Sor, N.; Mohammed, A.S.; Mohammed, A.A. Geopolymer Concrete as a Cleaner Construction Material: An Overview on Materials and Structural Performances. Clean. Mater. 2022, 5, 100111. [Google Scholar] [CrossRef]
- Pham, K.V.A.; Nguyen, T.K.; Le, T.A.; Han, S.W.; Lee, G.; Lee, K. Assessment of Performance of Fiber Reinforced Geopolymer Composites by Experiment and Simulation Analysis. Appl. Sci. 2019, 9, 3424. [Google Scholar] [CrossRef]
- Karimah, A.; Ridho, M.R.; Munawar, S.S.; Adi, D.S.; Ismadi; Damayanti, R.; Subiyanto, B.; Fatriasari, W.; Fudholi, A. A Review on Natural Fibers for Development of Eco-Friendly Bio-Composite: Characteristics, and Utilizations. J. Mater. Res. Technol. 2021, 13, 2442–2458. [Google Scholar] [CrossRef]
- Manso-Morato, J.; Hurtado-Alonso, N.; Revilla-Cuesta, V.; Skaf, M.; Ortega-López, V. Fiber-Reinforced Concrete and Its Life Cycle Assessment: A Systematic Review. J. Build. Eng. 2024, 94, 110062. [Google Scholar] [CrossRef]
- De Azevedo, A.; Cruz, A.; Marvila, M.; De Oliveira, L.; Monteiro, S.; Vieira, C.; Fediuk, R.; Timokhin, R.; Vatin, N.; Daironas, M. Natural Fibers as an Alternative to Synthetic Fibers in Reinforcement of Geopolymer Matrices: A Comparative Review. Polymers 2021, 13, 2493. [Google Scholar] [CrossRef] [PubMed]
- Shalchian, M.M.; Arabani, M. Application of Plant-Derived Fibers in Soil Reinforcement on Experimental, Numerical, and Case Study Scales: A Review. Bull. Eng. Geol. Environ. 2023, 82, 19. [Google Scholar] [CrossRef]
- Dittenber, D.B.; GangaRao, H.V.S. Critical Review of Recent Publications on Use of Natural Composites in Infrastructure. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1419–1429. [Google Scholar] [CrossRef]
- Bos, H.L.; Van Den Oever, M.J.A.; Peters, O.C.J.J. Tensile and Compressive Properties of Flax Fibres for Natural Fibre Reinforced Composites. J. Mater. Sci. 2002, 37, 1683–1692. [Google Scholar] [CrossRef]
- Tolêdo Filho, R.D.; Scrivener, K.; England, G.L.; Ghavami, K. Durability of Alkali-Sensitive Sisal and Coconut Fibres in Cement Mortar Composites. Cem. Concr. Compos. 2000, 22, 127–143. [Google Scholar] [CrossRef]
- Melo Filho, J.D.A.; Silva, F.D.A.; Toledo Filho, R.D. Degradation Kinetics and Aging Mechanisms on Sisal Fiber Cement Composite Systems. Cem. Concr. Compos. 2013, 40, 30–39. [Google Scholar] [CrossRef]
- Wei, J.; Meyer, C. Degradation Mechanisms of Natural Fiber in the Matrix of Cement Composites. Cem. Concr. Res. 2015, 73, 1–16. [Google Scholar] [CrossRef]
- Korniejenko, K.; Łach, M.; Hebdowska-Krupa, M.; Mikuła, J. The Mechanical Properties of Flax and Hemp Fibres Reinforced Geopolymer Composites. IOP Conf. Ser. Mater. Sci. Eng. 2018, 379, 012023. [Google Scholar] [CrossRef]
- Ye, H.; Zhang, Y.; Yu, Z.; Mu, J. Effects of Cellulose, Hemicellulose, and Lignin on the Morphology and Mechanical Properties of Metakaolin-Based Geopolymer. Constr. Build. Mater. 2018, 173, 10–16. [Google Scholar] [CrossRef]
- Islam, M.R.; Ul Isalm, M.R.; Rashid, M.; Ahammad, F.; Islam, M. Improvements in the Characteristics of Plant Fiber Reinforced Concrete. Eur. J. Theor. Appl. Sci. 2024, 2, 552–568. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Takagi, H.; Nakagaito, A.N.; Li, Y.; Waterhouse, G.I.N. Effect of Alkali Treatment on Interfacial Bonding in Abaca Fiber-Reinforced Composites. Compos. Part A Appl. Sci. Manuf. 2016, 90, 589–597. [Google Scholar] [CrossRef]
- Kumar, R.S.; Muralidharan, N.; Sathyamurthy, R. Optimization of Alkali Treatment Process Parameters for Kenaf Fiber: Experiments Design. J. Nat. Fibers 2022, 19, 4276–4285. [Google Scholar] [CrossRef]
- Arsène, M.-A.; Okwo, A.; Bilba, K.; Soboyejo, A.B.O.; Soboyejo, W.O. Chemically and Thermally Treated Vegetable Fibers for Reinforcement of Cement-Based Composites. Mater. Manuf. Process. 2007, 22, 214–227. [Google Scholar] [CrossRef]
- Orue, A.; Jauregi, A.; Unsuain, U.; Labidi, J.; Eceiza, A.; Arbelaiz, A. The Effect of Alkaline and Silane Treatments on Mechanical Properties and Breakage of Sisal Fibers and Poly(Lactic Acid)/Sisal Fiber Composites. Compos. Part A Appl. Sci. Manuf. 2016, 84, 186–195. [Google Scholar] [CrossRef]
- Majhi, S.; Pradhan, S.; Prakash, V.; Acharya, S.K. Influence of Alkali Treatment on the Interfacial Shear Strength of Agave lechuguilla Fiber and Its Significance as a Reinforcing Material in Polymer Composites for Mechanical Applications. Polym. Compos. 2023, 44, 3487–3499. [Google Scholar] [CrossRef]
- Oushabi, A.; Sair, S.; Oudrhiri Hassani, F.; Abboud, Y.; Tanane, O.; El Bouari, A. The Effect of Alkali Treatment on Mechanical, Morphological and Thermal Properties of Date Palm Fibers (DPFs): Study of the Interface of DPF–Polyurethane Composite. South Afr. J. Chem. Eng. 2017, 23, 116–123. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N.; Yuan, X. Improving the Mechanical Properties of Natural Fibre Fabric Reinforced Epoxy Composites by Alkali Treatment. J. Reinf. Plast. Compos. 2012, 31, 425–437. [Google Scholar] [CrossRef]
- Fernandes, E.M.; Mano, J.F.; Reis, R.L. Hybrid Cork–Polymer Composites Containing Sisal Fibre: Morphology, Effect of the Fibre Treatment on the Mechanical Properties and Tensile Failure Prediction. Compos. Struct. 2013, 105, 153–162. [Google Scholar] [CrossRef]
- Ayeni, I.S.; Lim, N.H.A.S.; Samad, M. Engineering Properties of Natural Fibre-Reinforced One-Part Geopolymer Concrete. Constr. Build. Mater. 2024, 456, 139161. [Google Scholar] [CrossRef]
- Abdelmouleh, M.; Boufi, S.; Belgacem, M.N.; Duarte, A.P.; Ben Salah, A.; Gandini, A. Modification of Cellulosic Fibres with Functionalised Silanes: Development of Surface Properties. Int. J. Adhes. Adhes. 2004, 24, 43–54. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, Y.; Gao, J.; Gao, J.; Yang, L.; Zhang, J.; Nan, R.; Cai, M.; Zhang, J. Properties of Arenga Engleri Becc Palm Fiber Particles with Silane Coupling Agent KH570 Treatments for Application in Polymer/Cement Composites. J. Nat. Fibers 2022, 19, 7348–7362. [Google Scholar] [CrossRef]
- Zhou, F.; Cheng, G.; Jiang, B. Effect of Silane Treatment on Microstructure of Sisal Fibers. Appl. Surf. Sci. 2014, 292, 806–812. [Google Scholar] [CrossRef]
- Asim, M.; Jawaid, M.; Abdan, K.; Ishak, M.R. Effect of Alkali and Silane Treatments on Mechanical and Fibre-Matrix Bond Strength of Kenaf and Pineapple Leaf Fibres. J. Bionic Eng. 2016, 13, 426–435. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, Q.; Li, L.; Ma, Y.; Li, X. Multiscale Analysis of Silane Coupling Agent Modified Rubber-Fiber Concrete Interfaces. Mater. Today Commun. 2023, 35, 105960. [Google Scholar] [CrossRef]
- Wu, W.; Zuo, H. Used Tire Rubber Powder/Plant Cellulose Composites Treated with Coupling Agent. Cellulose 2016, 23, 1939–1947. [Google Scholar] [CrossRef]
- Liu, T.; Wei, H.; Zhou, A.; Zou, D.; Jian, H. Multiscale Investigation on Tensile Properties of Ultra-High Performance Concrete with Silane Coupling Agent Modified Steel Fibers. Cem. Concr. Compos. 2020, 111, 103638. [Google Scholar] [CrossRef]
- Zhao, L.; Ding, Y.; Li, S.; Song, Y.; Gong, H.; Zhang, Y. Silane Treatment for Sisal Fibers to Improve the Degradation Resistance and Interface with Cement Matrix. Constr. Build. Mater. 2024, 429, 136435. [Google Scholar] [CrossRef]
- Liu, M.; Dai, W.; Li, M.; Jin, W.; Yang, X.; Han, Y.; Huang, M. Mechanism of Interface Performance Enhancement of Nano-SiO2 Modified Polyvinyl Alcohol Fiber Reinforced Geopolymer Concrete: Experiments, Microscopic Characterization, and Molecular Simulation. J. Build. Eng. 2024, 98, 111062. [Google Scholar] [CrossRef]
- Gapsari, F.; Wijatmiko, I.; Andoko, A.; Diharjo, K.; Mavinkere Rangappa, S.; Siengchin, S. Modification on Fiber from Alkali Treatment and AESO Coating to Enhance UV-Light and Water Absorption Resistance in Kapok Fiber Reinforced Polyester Composites. J. Nat. Fibers 2024, 21, 2383970. [Google Scholar] [CrossRef]
- Li, Y.; Ma, H.; Shen, Y.; Li, Q.; Zheng, Z. Effects of Resin inside Fiber Lumen on the Mechanical Properties of Sisal Fiber Reinforced Composites. Compos. Sci. Technol. 2015, 108, 32–40. [Google Scholar] [CrossRef]
- Adekunle, K.F. Surface Treatments of Natural Fibres—A Review: Part 1. Open J. Polym. Chem. 2015, 05, 41–46. [Google Scholar] [CrossRef]
- Kalia, S.; Kaith, B.S.; Kaur, I. Pretreatments of Natural Fibers and Their Application as Reinforcing Material in Polymer Composites—A Review. Polym. Eng. Sci 2009, 49, 1253–1272. [Google Scholar] [CrossRef]
- Waqas, R.M.; Butt, F.; Zhu, X.; Jiang, T.; Tufail, R.F. A Comprehensive Study on the Factors Affecting the Workability and Mechanical Properties of Ambient Cured Fly Ash and Slag Based Geopolymer Concrete. Appl. Sci. 2021, 11, 8722. [Google Scholar] [CrossRef]
- Wang, H.; Wu, H.; Xing, Z.; Wang, R.; Dai, S. The Effect of Various Si/Al, Na/Al Molar Ratios and Free Water on Micromorphology and Macro-Strength of Metakaolin-Based Geopolymer. Materials 2021, 14, 3845. [Google Scholar] [CrossRef]
- Mohr, B.J.; Biernacki, J.J.; Kurtis, K.E. Supplementary Cementitious Materials for Mitigating Degradation of Kraft Pulp Fiber-Cement Composites. Cem. Concr. Res. 2007, 37, 1531–1543. [Google Scholar] [CrossRef]
- Wei, J.; Meyer, C. Utilization of Rice Husk Ash in Green Natural Fiber-Reinforced Cement Composites: Mitigating Degradation of Sisal Fiber. Cem. Concr. Res. 2016, 81, 94–111. [Google Scholar] [CrossRef]
- Gholampour, A.; Danish, A.; Ozbakkaloglu, T.; Yeon, J.H.; Gencel, O. Mechanical and Durability Properties of Natural Fiber-Reinforced Geopolymers Containing Lead Smelter Slag and Waste Glass Sand. Constr. Build. Mater. 2022, 352, 129043. [Google Scholar] [CrossRef]
- Poletanovic, B.; Dragas, J.; Ignjatovic, I.; Komljenovic, M.; Merta, I. Physical and Mechanical Properties of Hemp Fibre Reinforced Alkali-Activated Fly Ash and Fly Ash/Slag Mortars. Constr. Build. Mater. 2020, 259, 119677. [Google Scholar] [CrossRef]
- Phoo-ngernkham, T.; Maegawa, A.; Mishima, N.; Hatanaka, S.; Chindaprasirt, P. Effects of Sodium Hydroxide and Sodium Silicate Solutions on Compressive and Shear Bond Strengths of FA–GBFS Geopolymer. Constr. Build. Mater. 2015, 91, 1–8. [Google Scholar] [CrossRef]
- Sachet, W.H.; Salman, W.D. Geopolymer Concrete, Mortar, and Paste: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1076, 012108. [Google Scholar] [CrossRef]
- Sá Ribeiro, M.G.; Miranda, I.P.A.; Kriven, W.M.; Ozer, A.; Sá Ribeiro, R.A. High Strength and Low Water Absorption of Bamboo Fiber-Reinforced Geopolymer Composites. Constr. Build. Mater. 2024, 411, 134179. [Google Scholar] [CrossRef]
- Jegan, M.; Annadurai, R.; Kannan Rajkumar, P.R. A State of the Art on Effect of Alkali Activator, Precursor, and Fibers on Properties of Geopolymer Composites. Case Stud. Constr. Mater. 2023, 18, e01891. [Google Scholar] [CrossRef]
- Silva, G.; Castañeda, D.; Kim, S.; Castañeda, A.; Bertolotti, B.; Ortega-San-Martin, L.; Nakamatsu, J.; Aguilar, R. Analysis of the Production Conditions of Geopolymer Matrices from Natural Pozzolana and Fired Clay Brick Wastes. Constr. Build. Mater. 2019, 215, 633–643. [Google Scholar] [CrossRef]
- Li, H.; Tang, W.; Tan, Y.; Wang, Y.; Guo, B.; Gao, P.; Zhan, B.; Yu, Q. Effect of Short Fibers on Non-Uniform Strain Distribution of Geopolymer Mortar under Dry Conditions. Constr. Build. Mater. 2025, 459, 139768. [Google Scholar]
- Huang, Z.; Wang, Q. The Effect of Temperature on Dissolution Activity of Fly Ash and Metakaolin in Alkaline Conditions. Cem. Concr. Compos. 2024, 146, 105363. [Google Scholar] [CrossRef]
- Assaedi, H.; Shaikh, F.U.A.; Low, I.M. Characterizations of Flax Fabric Reinforced Nanoclay-Geopolymer Composites. Compos. Part B Eng. 2016, 95, 412–422. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, Q.; Dong, S.; Ashour, A.; Han, B. Interfacial Characteristics of Nano-Engineered Concrete Composites. Constr. Build. Mater. 2020, 259, 119803. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Peng, K.-D.; Alrefaei, Y.; Dai, J.-G. The Bond between Geopolymer Repair Mortars and OPC Concrete Substrate: Strength and Microscopic Interactions. Cem. Concr. Compos. 2021, 119, 103991. [Google Scholar] [CrossRef]
- Oriez, V.; Peydecastaing, J.; Pontalier, P.-Y. Lignocellulosic Biomass Mild Alkaline Fractionation and Resulting Extract Purification Processes: Conditions, Yields, and Purities. Clean Technol. 2020, 2, 91–115. [Google Scholar] [CrossRef]
- Rao, J.; Zhou, Y.; Fan, M. Revealing the Interface Structure and Bonding Mechanism of Coupling Agent Treated WPC. Polymers 2018, 10, 266. [Google Scholar] [CrossRef]
- Mourak, A.; Hajjaji, M. Moroccan Heated Clay-Based Geopolymer Reinforced with Date Palm Cellulose: Microstructure Characterization and Mechanical/Physical Properties. Clay Miner. 2024, 59, 50–62. [Google Scholar] [CrossRef]
- Sethi, S.; Ray, B.C. Environmental Effects on Fibre Reinforced Polymeric Composites: Evolving Reasons and Remarks on Interfacial Strength and Stability. Adv. Colloid Interface Sci. 2015, 217, 43–67. [Google Scholar] [CrossRef]
- Rahman, A.S.; Radford, D.W. Evaluation of the Geopolymer/Nanofiber Interfacial Bond Strength and Their Effects on Mode-I Fracture Toughness of Geopolymer Matrix at High Temperature. Compos. Interfaces 2017, 24, 817–831. [Google Scholar] [CrossRef]
- Wang, K.; Lin, B.; Wu, B.; Yao, Y. Repair of Ordinary Concrete Using Basalt Fiber Reinforced Geopolymer: High Temperature Resistance and Micro Structure Evolution of Adhesive Interface. J. Build. Eng. 2024, 97, 110712. [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, Y.; Zhou, W.; Jiskani, I.M.; Luan, B. Strength Analysis of Geopolymer-Rock Interface: Mohr-Coulomb Shear and Interface Transition Zone (ITZ) Nanoindentation Testing. Constr. Build. Mater. 2025, 458, 139544. [Google Scholar] [CrossRef]
- Silva, G.; Kim, S.; Bertolotti, B.; Nakamatsu, J.; Aguilar, R. Optimization of a Reinforced Geopolymer Composite Using Natural Fibers and Construction Wastes. Constr. Build. Mater. 2020, 258, 119697. [Google Scholar] [CrossRef]
- Sigrüner, M.; Muscat, D.; Strübbe, N. Investigation on pull-out Behavior and Interface Critical Parameters of Polymer Fibers Embedded in Concrete and Their Correlation with Particular Fiber Properties. J. Appl. Polym. Sci. 2021, 138, 50745. [Google Scholar] [CrossRef]
- Ferreira, S.R.; Pepe, M.; Martinelli, E.; De Andrade Silva, F.; Toledo Filho, R.D. Influence of Natural Fibers Characteristics on the Interface Mechanics with Cement Based Matrices. Compos. Part B Eng. 2018, 140, 183–196. [Google Scholar] [CrossRef]
- Liu, B.; Hu, X.; Li, Y.; Xiao, T.; Xu, F. Internal Three-Dimensional Strain Evolution of the Failure Process for Short Carbon Fiber Composite through in Situ Synchrotron Radiation X-Ray Computed Tomography. Carbon 2020, 157, 506–514. [Google Scholar] [CrossRef]
- Li, S.; Chen, D.; Lu, Y.; Liu, Z. Fatigue Fracture Characteristics of Normal Concrete and High Ductility Geopolymer Bonding Based on DIC Technique. Thin-Walled Struct. 2024, 196, 111469. [Google Scholar] [CrossRef]
- Leite, F.L.; Herrmann, P.S.P.; Da Róz, A.L.; Ferreira, F.C.; Curvelo, A.A.S.; Mattoso, L.H.C. Investigation of Sisal Fibers by Atomic Force Microscopy: Morphological and Adhesive Characteristics. J. Nanosci. Nanotech. 2006, 6, 2354–2361. [Google Scholar] [CrossRef]
- Liu, W.; Shomali, A.; Zhang, C.; Coasne, B.; Carmeliet, J.; Derome, D. Nanostructure and Interfacial Mechanical Properties of PEG/Cellulose Nanocomposites Studied with Molecular Dynamics. Carbohydr. Polym. 2024, 343, 122429. [Google Scholar] [CrossRef] [PubMed]
- Qin, R.; Li, Y.; Wong, S.Y.; Teo, F.Y.; Yu, Z.; Sun, L.; Zheng, Y. Understanding on the Creep Behavior of Fiber Reinforced Polymer via Fiber/Matrix Interaction. Constr. Build. Mater. 2024, 451, 138875. [Google Scholar] [CrossRef]
- Huang, H.; Luo, J.; Peng, C.; Sun, T.; Deng, T.; Hu, J.; Guzal Anvarovna, K.; Azizbek Davlatali Ugli, N.; Hou, D.; Wei, J.; et al. Interfacial Bond between Modified Micro Carbon Fiber and High-Strength Cement Paste in UHPC: Bond-Slip Tests and Molecular Dynamic Simulation. Cem. Concr. Compos. 2023, 142, 105168. [Google Scholar] [CrossRef]
- Alomayri, T.; Low, I.M. Synthesis and Characterization of Mechanical Properties in Cotton Fiber-Reinforced Geopolymer Composites. J. Asian Ceram. Soc. 2013, 1, 30–34. [Google Scholar] [CrossRef]
- Sá Ribeiro, R.A.; Sá Ribeiro, M.G.; Sankar, K.; Kriven, W.M. Geopolymer-Bamboo Composite—A Novel Sustainable Construction Material. Constr. Build. Mater. 2016, 123, 501–507. [Google Scholar] [CrossRef]
- Korniejenko, K.; Frączek, E.; Pytlak, E.; Adamski, M. Mechanical Properties of Geopolymer Composites Reinforced with Natural Fibers. Procedia Eng. 2016, 151, 388–393. [Google Scholar] [CrossRef]
- Chen, R.; Ahmari, S.; Zhang, L. Utilization of Sweet Sorghum Fiber to Reinforce Fly Ash-Based Geopolymer. J. Mater. Sci. 2014, 49, 2548–2558. [Google Scholar] [CrossRef]
- Amalia, F.; Akifah, N.; Nurfadilla; Subaer. Development of Coconut Trunk Fiber Geopolymer Hybrid Composite for Structural Engineering Materials. IOP Conf. Ser. Mater. Sci. Eng. 2017, 180, 012014. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, Z.; Zhu, Z.; Guo, Q.; Wu, X.; Zhao, R. Research on Different Types of Fiber Reinforced Concrete in Recent Years: An Overview. Constr. Build. Mater. 2023, 365, 130075. [Google Scholar] [CrossRef]
- Zulfiati, R.; Saloma; Idris, Y. Mechanical Properties of Fly Ash-Based Geopolymer with Natural Fiber. J. Phys. Conf. Ser. 2019, 1198, 082021. [Google Scholar] [CrossRef]
- Ayawanna, J.; Poowancum, A. Enhancing Flexural Strength of Metakaolin-Based Geopolymer Reinforced with Different Types of Fibers. Sustain. Chem. Pharm. 2024, 37, 101439. [Google Scholar] [CrossRef]
- Ranjbar, N.; Zhang, M. Fiber-Reinforced Geopolymer Composites: A Review. Cem. Concr. Compos. 2020, 107, 103498. [Google Scholar] [CrossRef]
- Alzeer, M.; MacKenzie, K. Synthesis and Mechanical Properties of Novel Composites of Inorganic Polymers (Geopolymers) with Unidirectional Natural Flax Fibres (Phormium Tenax). Appl. Clay Sci. 2013, 75–76, 148–152. [Google Scholar] [CrossRef]
- Addis, L.B.; Sendekie, Z.B.; Habtu, N.G.; Schubert, D.W.; Roether, J.A.; Boccaccini, A.R. False Banana Fiber Reinforced Geopolymer Composite—A Novel Sustainable Material. Ceram. Int. 2024, 50, 24442–24450. [Google Scholar] [CrossRef]
- Alomayri, T.; Shaikh, F.U.A.; Low, I.M. Thermal and Mechanical Properties of Cotton Fabric-Reinforced Geopolymer Composites. J. Mater. Sci. 2013, 48, 6746–6752. [Google Scholar] [CrossRef]
- Alomayri, T.; Shaikh, F.U.A.; Low, I.M. Characterisation of Cotton Fibre-Reinforced Geopolymer Composites. Compos. Part B Eng. 2013, 50, 1–6. [Google Scholar] [CrossRef]
- Wongsa, A.; Kunthawatwong, R.; Naenudon, S.; Sata, V.; Chindaprasirt, P. Natural Fiber Reinforced High Calcium Fly Ash Geopolymer Mortar. Constr. Build. Mater. 2020, 241, 118143. [Google Scholar] [CrossRef]
- Alomayri, T.; Assaedi, H.; Shaikh, F.U.A.; Low, I.M. Effect of Water Absorption on the Mechanical Properties of Cotton Fabric-Reinforced Geopolymer Composites. J. Asian Ceram. Soc. 2014, 2, 223–230. [Google Scholar] [CrossRef]
- Farhan, K.Z.; Johari, M.A.M.; Demirboğa, R. Impact of Fiber Reinforcements on Properties of Geopolymer Composites: A Review. J. Build. Eng. 2021, 44, 102628. [Google Scholar] [CrossRef]
- Poletanovic, B.; Janotka, I.; Janek, M.; Bacuvcik, M.; Merta, I. Influence of the NaOH-Treated Hemp Fibres on the Properties of Fly-Ash Based Alkali-Activated Mortars Prior and after Wet/Dry Cycles. Constr. Build. Mater. 2021, 309, 125072. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, X.; Hao, H. Dynamic Tensile Properties of Geopolymer Concrete and Fibre Reinforced Geopolymer Concrete. Constr. Build. Mater. 2023, 393, 132159. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, R.; Ma, B.; Si, R.; Zeng, X. Mechanical and Fracture Properties of Fly Ash-Based Geopolymer Concrete with Different Fibers. J. Build. Eng. 2023, 63, 105281. [Google Scholar] [CrossRef]
- Low, I.M.; McGrath, M.; Lawrence, D.; Schmidt, P.; Lane, J.; Latella, B.A.; Sim, K.S. Mechanical and Fracture Properties of Cellulose-Fibre-Reinforced Epoxy Laminates. Compos. Part A Appl. Sci. Manuf. 2007, 38, 963–974. [Google Scholar] [CrossRef]
- Wambua, P.; Ivens, J.; Verpoest, I. Natural Fibres: Can They Replace Glass in Fibre Reinforced Plastics? Compos. Sci. Technol. 2003, 63, 1259–1264. [Google Scholar] [CrossRef]
- Rayapudi, S.; Rao, T.C.S. Strength Characteristics and Impact Resistance of Fiber-Reinforced Geopolymer Concrete Elements. In Low Carbon Materials and Technologies for a Sustainable and Resilient Infrastructure; Pancharathi, R.K., Leung, K.Y., Chandra, C., Kishen, J.M., Eds.; Lecture Notes in Civil Engineering; Springer Nature: Singapore, 2024; Volume 440, pp. 495–504. [Google Scholar]
- Md, B.; Unnikrishnan, S. Mechanical Strength and Impact Resistance of Hybrid Fiber Reinforced Concrete with Coconut and Polypropylene Fibers. Mater. Today Proc. 2022, 65, 1873–1880. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Mo, Z.; Chouw, N.; Jayaraman, K.; Xu, Z. A Critical Review on the Properties of Natural Fibre Reinforced Concrete Composites Subjected to Impact Loading. J. Build. Eng. 2023, 77, 107497. [Google Scholar] [CrossRef]
- Santana, H.A.; Andrade Neto, J.S.; Ribeiro, D.V.; Cilla, M.S.; Dias, C.M.R. Accelerated Alkaline Attack of 3D Printing Polymers to Assess Their Durability in Geopolymer-Based Matrices. J. Mater. Civ. Eng. 2021, 33, 04021327. [Google Scholar] [CrossRef]
- Li, F.; Chen, D.; Lu, Y.; Zhang, H.; Li, S. Influence of Mixed Fibers on Fly Ash Based Geopolymer Resistance against Freeze-Thaw Cycles. J. Non-Cryst. Solids 2022, 584, 121517. [Google Scholar] [CrossRef]
- Silva, G.; Kim, S.; Aguilar, R.; Nakamatsu, J. Natural Fibers as Reinforcement Additives for Geopolymers—A Review of Potential Eco-Friendly Applications to the Construction Industry. Sustain. Mater. Technol. 2020, 23, e00132. [Google Scholar] [CrossRef]
- Zhao, N.; Wang, S.; Quan, X.; Xu, F.; Liu, K.; Liu, Y. Behavior of Polyvinyl Alcohol Fiber Reinforced Geopolymer Composites under the Coupled Attack of Sulfate and Freeze-Thaw in a Marine Environment. Ocean Eng. 2021, 238, 109734. [Google Scholar] [CrossRef]
- Bariş, K.E.; Tanaçan, L. Durability behavior of banana fiber-reinforced natural pozzolan geopolymer. J. Green Build. 2023, 18, 149–168. [Google Scholar] [CrossRef]
- Gencel, O.; Yavuz Bayraktar, O.; Kaplan, G.; Benli, A.; Martínez-Barrera, G.; Brostow, W.; Tek, M.; Bodur, B. Characteristics of Hemp Fibre Reinforced Foam Concretes with Fly Ash and Taguchi Optimization. Constr. Build. Mater. 2021, 294, 123607. [Google Scholar] [CrossRef]
- Tan, J.; Huang, Y.; Liu, L.; Yu, S.; Zheng, G. Preparation and Freeze-Thaw Resistance of Geopolymer-Based Natural Plant Fiber Composites. In Advances in Transdisciplinary Engineering; Dobrotă, D., Cheng, C., Eds.; IOS Press: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Xuan, X.; Tan, J.; Huang, Y.; Xie, M.; Zheng, G. Preparation and Freeze Resistance of Geopolymer-Bagasse Fiber Composites. Bull. Chin. Ceram. Soc 2020, 39, 532–536. (In Chinese) [Google Scholar]
- Sahraei Moghadam, A.; Mirza Goltabar Roshan, A.; Omidinasab, F. Utilization of Agricultural Wastes as Fiber, Binder and Aggregates of Geopolymer Mortars: Application of Taguchi Method for Strength and Durability Optimization. J. Build. Eng. 2023, 75, 106906. [Google Scholar] [CrossRef]
- Nkwaju, R.Y.; Djobo, J.N.Y.; Nouping, J.N.F.; Huisken, P.W.M.; Deutou, J.G.N.; Courard, L. Iron-Rich Laterite-Bagasse Fibers Based Geopolymer Composite: Mechanical, Durability and Insulating Properties. Appl. Clay Sci. 2019, 183, 105333. [Google Scholar] [CrossRef]
- Yanou, R.N.; Kaze, R.C.; Adesina, A.; Nemaleu, J.G.D.; Jiofack, S.B.K.; Djobo, J.N.Y. Performance of Laterite-Based Geopolymers Reinforced with Sugarcane Bagasse Fibers. Case Stud. Constr. Mater. 2021, 15, e00762. [Google Scholar] [CrossRef]
- Batista Dos Santos, G.Z.; Passos De Oliveira, D.; De Almeida Melo Filho, J.; Marques Da Silva, N. Sustainable Geopolymer Composite Reinforced with Sisal Fiber: Durability to Wetting and Drying Cycles. J. Build. Eng. 2021, 43, 102568. [Google Scholar] [CrossRef]
- Noor Abbas, A.-G.; Nora Aznieta Abdul Aziz, F.; Abdan, K.; Azline Mohd Nasir, N.; Fahim Huseien, G. Experimental Study on Durability Properties of Kenaf Fibre-Reinforced Geopolymer Concrete. Constr. Build. Mater. 2023, 396, 132160. [Google Scholar] [CrossRef]
- Wei, Y.; Chai, J.; Qin, Y.; Li, Y.; Xu, Z.; Li, Y.; Ma, Y. Effect of Fly Ash on Mechanical Properties and Microstructure of Cellulose Fiber-Reinforced Concrete under Sulfate Dry–Wet Cycle Attack. Constr. Build. Mater. 2021, 302, 124207. [Google Scholar] [CrossRef]
- Khan, M.; Cao, M.; Chu, S.H.; Ali, M. Properties of Hybrid Steel-Basalt Fiber Reinforced Concrete Exposed to Different Surrounding Conditions. Constr. Build. Mater. 2022, 322, 126340. [Google Scholar] [CrossRef]
- Gulzar, M.A.; Ali, B.; Barakat, O.; Azab, M.; Najemalden, A.M.; Salih Mohammed, A.; Alashker, Y. Influence of Jute Fiber on Tensile, Electrical, and Permeability Characteristics of Slag Concrete: A Better, Cheaper, and Eco-Friendly Substitute for Conventional Concrete. J. Nat. Fibers 2023, 20, 2170947. [Google Scholar] [CrossRef]
- Hadigheh, S.A.; Ke, F.; Fatemi, H. Durability Design Criteria for the Hybrid Carbon Fibre Reinforced Polymer (CFRP)-Reinforced Geopolymer Concrete Bridges. Structures 2022, 35, 325–339. [Google Scholar] [CrossRef]
- Zhang, X.; Long, K.; Liu, W.; Li, L.; Long, W.-J. Carbonation and Chloride Ions’ Penetration of Alkali-Activated Materials: A Review. Molecules 2020, 25, 5074. [Google Scholar] [CrossRef]
- Ye, H.; Radlińska, A. Carbonation-Induced Volume Change in Alkali-Activated Slag. Constr. Build. Mater. 2017, 144, 635–644. [Google Scholar] [CrossRef]
- Pasupathy, K.; Sanjayan, J.; Rajeev, P. Evaluation of Alkalinity Changes and Carbonation of Geopolymer Concrete Exposed to Wetting and Drying. J. Build. Eng. 2021, 35, 102029. [Google Scholar] [CrossRef]
- Huang, Y.; Tan, J.; Xuan, X.; Wei, S.; Liu, L.; Yu, S.; Zheng, G. Durability of Plant Fiber Reinforced Alkali Activated Composites. Constr. Build. Mater. 2022, 314, 125501. [Google Scholar] [CrossRef]
- Merta, I.; Poletanovic, B.; Dragas, J.; Carevic, V.; Ignjatovic, I.; Komljenovic, M. The Influence of Accelerated Carbonation on Physical and Mechanical Properties of Hemp-Fibre-Reinforced Alkali-Activated Fly Ash and Fly Ash/Slag Mortars. Polymers 2022, 14, 1799. [Google Scholar] [CrossRef]
- Pouhet, R.; Cyr, M. Alkali–Silica Reaction in Metakaolin-Based Geopolymer Mortar. Mater. Struct. 2015, 48, 571–583. [Google Scholar] [CrossRef]
- Ardanuy, M.; Claramunt, J.; Toledo Filho, R.D. Cellulosic Fiber Reinforced Cement-Based Composites: A Review of Recent Research. Constr. Build. Mater. 2015, 79, 115–128. [Google Scholar] [CrossRef]
- Zhang, B. Durability of Low-Carbon Geopolymer Concrete: A Critical Review. Sustain. Mater. Technol. 2024, 40, e00882. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, L.; Ma, G.; Zhao, X.; Zhao, X. Preparation and Properties of Bio-Geopolymer Composites with Waste Cotton Stalk Materials. J. Clean. Prod. 2020, 245, 118842. [Google Scholar] [CrossRef]
- Lezzerini, M.; Aquino, A.; Pagnotta, S. Acid Resistance of Metakaolin-Based Geopolymers and Geopolymeric Mortars Reinforced with Coconut Fibers. Fibers 2024, 12, 40. [Google Scholar] [CrossRef]
- Thanushan, K.; Sathiparan, N. Mechanical Performance and Durability of Banana Fibre and Coconut Coir Reinforced Cement Stabilized Soil Blocks. Materialia 2022, 21, 101309. [Google Scholar] [CrossRef]
- Sá Ribeiro, M.G.; Sá Ribeiro, M.G.; Keane, P.F.; Sardela, M.R.; Kriven, W.M.; Sá Ribeiro, R.A. Acid Resistance of Metakaolin-Based, Bamboo Fiber Geopolymer Composites. Constr. Build. Mater. 2021, 302, 124194. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, S.; Zuo, Y.; Chen, W.; Ye, G. Chemical Deformation of Metakaolin Based Geopolymer. Cem. Concr. Res. 2019, 120, 108–118. [Google Scholar] [CrossRef]
- Alcivar-Bastidas, S.; Petroche, D.M.; Cornejo, M.H.; Martinez-Echevarria, M.J. Effect of Aging Process on Mechanical Performance of Reinforced Mortar with NaOH Abaca Fibers. Case Stud. Constr. Mater. 2024, 20, e03122. [Google Scholar] [CrossRef]
- Haily, E.; Zari, N.; Bouhfid, R.; Qaiss, A. Natural Fibers as an Alternative to Synthetic Fibers in the Reinforcement of Phosphate Sludge-Based Geopolymer Mortar. J. Build. Eng. 2023, 67, 105947. [Google Scholar] [CrossRef]
- Ranjithkumar, M.G.; Chandrasekaran, P.; Rajeshkumar, G. Characterization of Sustainable Natural Fiber Reinforced Geopolymer Composites. Polym. Compos. 2022, 43, 3691–3698. [Google Scholar] [CrossRef]
- Kawashima, S.; Shah, S.P. Early-Age Autogenous and Drying Shrinkage Behavior of Cellulose Fiber-Reinforced Cementitious Materials. Cem. Concr. Compos. 2011, 33, 201–208. [Google Scholar] [CrossRef]
- Lv, C.; Liu, J. Alkaline Degradation of Plant Fiber Reinforcements in Geopolymer: A Review. Molecules 2023, 28, 1868. [Google Scholar] [CrossRef]
- Xu, S.; Wu, C.; Yue, J.; Xu, Z. Shrinkage and Mechanical Properties of Fibre-Reinforced Blast Furnace Slag-Steel Slag-Based Geopolymer. Adv. Civ. Eng. 2022, 2022, 8931401. [Google Scholar] [CrossRef]
- Amran, M.; Onaizi, A.M.; Makul, N.; Abdelgader, H.S.; Tang, W.C.; Alsulami, B.T.; Alluqmani, A.E.; Gamil, Y. Shrinkage Mitigation in Alkali-Activated Composites: A Comprehensive Insight into the Potential Applications for Sustainable Construction. Results Eng. 2023, 20, 101452. [Google Scholar] [CrossRef]
- Walbrück, K.; Drewler, L.; Witzleben, S.; Stephan, D. Factors Influencing Thermal Conductivity and Compressive Strength of Natural Fiber-Reinforced Geopolymer Foams. Open Ceram. 2021, 5, 100065. [Google Scholar] [CrossRef]
- Novais, R.M.; Carvalheiras, J.; Senff, L.; Lacasta, A.M.; Cantalapiedra, I.R.; Giro-Paloma, J.; Seabra, M.P.; Labrincha, J.A. Multifunctional Cork—Alkali-Activated Fly Ash Composites: A Sustainable Material to Enhance Buildings’ Energy and Acoustic Performance. Energy Build. 2020, 210, 109739. [Google Scholar] [CrossRef]
- Silva, G.; Salirrosas, J.; Ruiz, G.; Kim, S.; Nakamatsu, J.; Aguilar, R. Evaluation of Fire, High-Temperature and Water Erosion Resistance of Fiber-Reinforced Lightweight Pozzolana-Based Geopolymer Mortars. IOP Conf. Ser. Mater. Sci. Eng. 2019, 706, 012016. [Google Scholar] [CrossRef]
- Ma, G.; Li, Z.; Wang, L.; Wang, F.; Sanjayan, J. Mechanical Anisotropy of Aligned Fiber Reinforced Composite for Extrusion-Based 3D Printing. Constr. Build. Mater. 2019, 202, 770–783. [Google Scholar] [CrossRef]
- Liu, J.; Lv, C. Properties of 3D-Printed Polymer Fiber-Reinforced Mortars: A Review. Polymers 2022, 14, 1315. [Google Scholar] [CrossRef]
- Kozub, B.; Gądek, S.; Tyliszczak, B.; Wojnar, L.; Korniejenko, K. Leveraging 3D Printing Capability for Geopolymer Composites Based on Fly Ash with Cotton Fibers Addition. Int. J. Eng. Technol. Innov. 2024, 14, 231–243. [Google Scholar] [CrossRef]
- Kong, X.; Dai, L.; Wang, Y.; Qiao, D.; Hou, S.; Wang, S. Influence of Kenaf Stalk on Printability and Performance of 3D Printed Industrial Tailings Based Geopolymer. Constr. Build. Mater. 2022, 315, 125787. [Google Scholar] [CrossRef]
Fiber Type | Fiber | Density (g/cm3) | Tensile Modulus (GPa) | Tensile Strength (MPa) | Elongation (%) | Organ Source Classification | Reference |
---|---|---|---|---|---|---|---|
Seed Fibers | Cotton | 1.5–1.6 | 5.5–12.6 | 287–597 | 7.8–8.2 | Seed epidermal unicellular fibers | [10] |
Bast Fibers | Flax | 1.4–1.5 | 27.6–103 | 343–2000 | 1.2–3.3 | Primary phloem of flax stem | [10,11] |
Hemp | 1.4–1.5 | 23.5–90 | 270–900 | 1–3.5 | Cannabis sativa stem phloem | [10] | |
Jute | 1.3–1.49 | 8–78 | 320–800 | 1–1.8 | Jute secondary phloem | [10] | |
Ramie | 1.0–1.55 | 24.5–128 | 400–1000 | 1.2–4.0 | Ramie bast fiber bundle | [10] | |
Kenaf | 1.4 | 14.5–53 | 223–930 | 1.5–2.7 | secondary phloem of red hemp (Jatropha curcas) | [10] | |
Leaf Fibers | Sisal | 1.33–1.5 | 9.0–38 | 363–700 | 2.0–7.0 | sisal leaf vascular fiber | [10] |
Abaca | 1.5 | 6.2–20 | 400–980 | 1.0–10 | Plantago lanceolata leaf sheath fiber bundle | [10] | |
Pineapple leaves | 0.8–1.6 | 144–825 | 180–1627 | 1.6–14.5 | Pineapple Leaf Fiber | [10] | |
Banana | 1.35 | 12 | 500 | 1.5–9 | Banana leaf sheath fiber bundle | [10] | |
Stalk Fibers | Bamboo | 0.6–1.1 | 11–32 | 140–800 | 1.5–9 | vascular fibers of bamboo stems | [10] |
Bagasse | 1.25 | 17–27.1 | 222–290 | 1.1 | Sugar cane stalk fiber | [10] | |
Fruit Fibers | Oil palm | 0.7–1.55 | 0.5–3.2 | 80–248 | 17–25 | Oil Palm Husk Fiber Bundle | [10] |
Coconut shell | 0.8 | 3.5 | 174 | 25 | Coconut fruit husk fiber bundle | [12] |
Fiber Type | Matrix | Fiber Dosage | Length | Compressive Strength Trend | Remarks | Reference |
---|---|---|---|---|---|---|
Cotton | FA-based | 0.5 wt% | 10 mm | ↑ 140% | Peak at 0.5 wt%, then ↓ at 0.7–1.0 wt% | [72] |
Coconut, Cotton, Sisal, Raffia | FA-based | 1.0 wt% | Cotton: 30 mm Others: 3 mm | Coconut ↑ 27%, Cotton ↑ 1 5%, Sisal ↑ 2%, Raffia ↓ 45% | Fiber type affects the trend | [74] |
Sweet Sorghum | FA-based | 1–3 wt% | ≤50 mm | ↓ 9–26% | Strength declines with increasing dosage | [75] |
Bamboo | MK-based | 5 wt% | ≤40 mm | ↓ 50% | Long fibers at high dosage are detrimental | [73] |
Ramie, Coir, Sisal, Jute, Hemp | FA-based | 1–2 wt% | ≤25 mm | Ramie (1%) highest strength; others are slightly ↓ | Ramie shows potential | [44] |
Coconut Trunk | FA-based | 0–1 g | 30–50 mm | Peak at 0.5 g | Highest value 89.44 MPa | [76] |
Kenaf, Coconut, Oil Palm | FA-based | 0–1 vol% | 25 mm | ↓ With increasing fiber content | Due to increased porosity | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Li, J.; Lu, W.; Zhang, Y. Research Progress and Application Prospects of Plant Fibers in Geopolymer Concrete: A Review. Materials 2025, 18, 2342. https://doi.org/10.3390/ma18102342
Li Z, Li J, Lu W, Zhang Y. Research Progress and Application Prospects of Plant Fibers in Geopolymer Concrete: A Review. Materials. 2025; 18(10):2342. https://doi.org/10.3390/ma18102342
Chicago/Turabian StyleLi, Zijian, Jinjie Li, Weihua Lu, and Yongxing Zhang. 2025. "Research Progress and Application Prospects of Plant Fibers in Geopolymer Concrete: A Review" Materials 18, no. 10: 2342. https://doi.org/10.3390/ma18102342
APA StyleLi, Z., Li, J., Lu, W., & Zhang, Y. (2025). Research Progress and Application Prospects of Plant Fibers in Geopolymer Concrete: A Review. Materials, 18(10), 2342. https://doi.org/10.3390/ma18102342