In Situ Growth of CoS Nanosheets on Carbon Fiber Surfaces to Enhance the Interfacial Properties of Carbon Fiber/Norbornene Polyimide Composites
Abstract
:1. Introduction
2. Preparation and Experiment
2.1. Preparation
2.1.1. CF Desizing
2.1.2. Formulating Precursor Solutions Used in CF Surface Treatment
- Solution B (solute mass concentration of 0.002 g/mL): 0.318 g of CoCl2·6H2O and 0.1 g of thioacetamide (TAA) were added to solution A and stirred at 1000 rpm for 60 min until completely dissolved.
- Solution C (solute mass concentration of 0.006 g/mL): 0.954 g of CoCl2·6H2O and 0.3 g of TAA were added to another portion of solution A and stirred under the same conditions for 60 min until completely dissolved.
- Solution D (solute mass concentration of 0.008 g/mL): 1.272 g of CoCl2·6H2O and 0.4 g of TAA were added to a third portion of solution A and stirred at 1000 rpm for 60 min until completely dissolved.
2.2. Experiment
2.2.1. Surface Oxidation and In Situ Growth of CoS Nanosheets on CF
2.2.2. Fabrication of CF/PI Composites
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mallick, P. Fiber-Reinforced Composites: Materials, Manufacturing, and Design; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Soutis, C. Fibre Reinforced Composites in Aircraft Construction. Prog. Aerosp. Sci. 2005, 41, 143–151. [Google Scholar] [CrossRef]
- Soutis, C. Carbon Fiber Reinforced Plastics in Aircraft Construction. Mater. Sci. Eng. A 2005, 412, 171–176. [Google Scholar] [CrossRef]
- Zhang, J.; Chevali, V.S.; Wang, H.; Wang, C.-H. Current Status of Carbon Fibre and Carbon Fibre Composites Recycling. Compos. Part B 2020, 193, 108053. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, X.; Qiu, B.; Luo, Y.; Ling, Y.; Chen, Y.; Xu, Z.; Liang, M.; Zou, H. Controllable Construction of Gradient Modulus Intermediate Layer on High Strength and High Modulus Carbon Fibers to Enhance Interfacial Properties of Epoxy Composites by Efficient Electrochemical Grafting. Compos. Part B 2022, 247, 110279. [Google Scholar] [CrossRef]
- Qiu, B.; Zou, Q.; Sun, T.; Ling, Y.; Zhou, S.; Chen, Y.; Xia, S.; Heng, Z.; Zou, H.; Liang, M. Environmentally Friendly Water-Soluble Epoxy Emulsions Nano Sphere Improved the Interfacial Performance of High Modulus Carbon Fiber Reinforced Epoxy Composites Based on Robust van Der Waals Force. Compos. Part B 2022, 243, 110141. [Google Scholar] [CrossRef]
- Guo, H.; Ma, X.; Lv, Q.; Zhang, C.; Duan, G. Effect of Carbonization Temperature on Microstructures and Properties of Electrospun Tantalum Carbide/Carbon Fibers. Molecules 2023, 28, 3430. [Google Scholar] [CrossRef]
- Ma, S.; Li, H.; Fei, J.; Li, C. Flexible-Rigid Scalable Structures for Trans-Scale Interface Reinforcement of Carbon Fiber/Phenolic Composites: Effect on Properties. Compos. Part B 2023, 258, 110703. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, J.; Yang, T.; Zhang, L.; Hu, C. Preparation and Mechanical Properties of Bionic Carbon Fiber/Epoxy Resin Composites Inspired by Owl Feather. J. Bionic Eng. 2025, 22, 282–292. [Google Scholar] [CrossRef]
- Mamolo, S.U.; Sodano, H.A. Interfacial Reinforcement of Carbon Fiber Composites through a Chlorinated Aramid Nanofiber Interphase. Compos. Sci. Technol. 2024, 245, 110351. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, H.; Shao, L.; Xu, Z.; Pan, S.; Chen, H. Construction and Performance Study of Interface Layer of Carbon Fiber/Epoxy Composites by Electrostatic Adsorption. Polym. Compos. 2025, 46, 4755–4767. [Google Scholar] [CrossRef]
- Fei, J.; Zhang, C.; Luo, D.; Cui, Y.; Li, H.; Lu, Z.; Huang, J. Vertically Aligned TiO2 Nanorods-Woven Carbon Fiber for Reinforcement of Both Mechanical and Anti-Wear Properties in Resin Composite. Appl. Surf. Sci. 2018, 435, 156–162. [Google Scholar] [CrossRef]
- Li, H.; Liu, C.; Zhu, J.; Sun, J.; Huan, X.; Geng, H.; Li, T.; Ge, L.; Jia, X.; Yang, X. Spider Silk-Inspired Heterogeneous Interphase Featuring Hybrid Interaction for Simultaneously Improving the Interfacial Strength and Fracture Toughness between Carbon Fiber and Epoxy by Regulating Hydrogen Bond Density. Compos. Part B 2024, 280, 111476. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, D.; Cheng, Q.; Zhang, L.; Wang, J.; Sun, H.; Gu, P.; Du, J.; Wang, Y.; Zhou, H. Outstanding Interlaminar Strength of Carbon Fiber Reinforced Epoxy Resin via Graphene Oxide Chemical Bridge Bonding. Appl. Surf. Sci. 2024, 670, 160658. [Google Scholar] [CrossRef]
- Sun, N.; Zhu, B.; Gao, X.; Qiao, K.; Zhang, Y.; Wang, B.; Fan, J.; Yu, K.; Liu, C.; Li, C. Improved the Interfacial Characteristics of Carbon Fiber/Polyamide 6 Composites by Synthesizing Polydopamine Rapidly on the Carbon Fiber Surface with Ultrasound-Assisted. Compos. Sci. Technol. 2023, 234, 109950. [Google Scholar] [CrossRef]
- Fu, Y.; Li, H.; Cao, W. Enhancing the Interfacial Properties of High-Modulus Carbon Fiber Reinforced Polymer Matrix Composites via Electrochemical Surface Oxidation and Grafting. Compos. Part A 2020, 130, 105719. [Google Scholar] [CrossRef]
- Tian, H.; Yao, Y.; Liu, D.; Li, Y.; Jv, R.; Xiang, G.; Xiang, A. Enhanced Interfacial Adhesion and Properties of Polypropylene/Carbon Fiber Composites by Fiber Surface Oxidation in Presence of a Compatibilizer. Polym. Compos. 2019, 40, E654–E662. [Google Scholar] [CrossRef]
- Wang, J.; Marashizadeh, P.; Weng, B.; Larson, P.; Altan, M.C.; Liu, Y. Synthesis, Characterization, and Modeling of Aligned ZnO Nanowire-Enhanced Carbon-Fiber-Reinforced Composites. Materials 2022, 15, 2618. [Google Scholar] [CrossRef]
- Sun, N.; Zhu, B.; Cai, X.; Du, H.; Yuan, X.; Zhang, Y.; Zhou, J.; Yan, S.; Zhou, M.; Qiao, K. 3-Isocyanatopropyltriethoxysilane Block-Graft Engineering Tailoring Carbon Fiber Surface to Manipulate Interface Properties of Carbon Fiber/Polyamide 6 Composites. Colloids Surf. A 2024, 682, 132920. [Google Scholar] [CrossRef]
- Dabees, S.; Borkar, A.; Newman, B.; Simon, Ž.; Hayne, D.J.; Coia, P.; Henderson, L.C. Improving Carbon Fibre Reinforced Polyphenylene Sulfide Using Amine and Phenolic Interphase Modifications. Compos. Part A 2024, 179, 108045. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, X.; Liu, D.; Yan, C.; Chen, X.; Hui, D.; Zhu, Y. Cyclomatrix-Type Polyphosphazene Coating: Improving Interfacial Property of Carbon Fiber/Epoxy Composites and Preserving Fiber Tensile Strength. Compos. Part B 2016, 93, 244–251. [Google Scholar] [CrossRef]
- Wu, Q.; Razzak, A.; Deng, H.; Bai, H.; Zhu, J. Mussel-Inspired Ferric Ion-Polydopamine Complex as a Facile, Green and Efficient Platform to Functionalize Carbon Fiber for Improving Interfacial Adhesion of Composites. Surf. Interfaces 2023, 37, 102742. [Google Scholar] [CrossRef]
- Li, S.; Zhang, C.; Fu, J.; Zhou, Y.; Sun, J.; He, Y.; Nan, F.; Yu, Z. Interfacial Modification of Carbon Fiber by Carbon Nanotube Gas-Phase Dispersion. Compos. Sci. Technol. 2020, 195, 108196. [Google Scholar] [CrossRef]
- Rai, R.S. Development of Hydrophilic Carbon Fiber Textiles Using Seed-Assisted Hydrothermal Deposition of ZnO Nanostructures for Enhanced Interfacial Interaction in CFRP Composites. Ceram. Int. 2024, 50, 52871–52880. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, C.; Sun, T.; Qiu, B.; Liang, M.; Heng, Z.; Zou, H. Mechanical Properties and Failure Mechanism of Spreading Carbon Fiber Reinforced Different Lateral Dimension of Graphene Oxide Modified Epoxy Composites. Chem. Eng. J. 2023, 451, 138332. [Google Scholar] [CrossRef]
- Zhao, M.; Qu, Q.; Guo, N.; Sun, Z.; Wang, K.; Guo, X. Stepwise Assembling Manganese Dioxide Nanosheets and Metal-Organic Frameworks on Carbon Fiber for Deriving Desirable Mechanical Properties and Flame Retardancy of Epoxy Composites. Adv. Compos. Hybrid Mater. 2023, 6, 150. [Google Scholar] [CrossRef]
- Quan, G.; Wu, Y.; Li, W.; Li, D.; Gong, B.; Sun, M.; Ao, Y.; Xiao, L.; Liu, Y. Growth of ZnO Nanorods/Flowers on the Carbon Fiber Surfaces Using Sodium Alginate as Medium to Enhance the Mechanical Properties of Composites. Int. J. Biol. Macromol. 2024, 260, 129457. [Google Scholar] [CrossRef]
- Cai, J.Y.; Li, Q.; Easton, C.D.; Liu, C.; Wilde, A.L.; Veitch, C.; McDonnell, J. Surface Modification of Carbon Fibres with Ammonium Cerium Nitrate for Interfacial Shear Strength Enhancement. Compos. Part B 2022, 246, 110173. [Google Scholar] [CrossRef]
- Fakhrhoseini, S.M.; Li, Q.; Unnikrishnan, V.; Naebe, M. Nano-Magnetite Decorated Carbon Fibre for Enhanced Interfacial Shear Strength. Carbon 2019, 148, 361–369. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, B.; Huang, Y. Constructing Nanosheet-like MOF on the Carbon Fiber Surfaces for Improving the Interfacial Properties of Carbo Fiber/Epoxy Composites. Appl. Surf. Sci. 2020, 514, 145870. [Google Scholar] [CrossRef]
- Li, W.; Li, Q.; Yue, Y.Z.; Wang, M.Y.; Ren, R. Improvement of Interfacial Properties in Bismaleimide Composites Using Functionalized Graphene Oxide Grafted Carbon Fiber. Polym. Eng. Sci. 2018, 58, 886–893. [Google Scholar] [CrossRef]
- Li, N.; Liu, X.; Li, G.-D.; Wu, Y.; Gao, R.; Zou, X. Vertically Grown CoS Nanosheets on Carbon Cloth as Efficient Hydrogen Evolution Electrocatalysts. Int. J. Hydrogen Energy 2017, 42, 9914–9921. [Google Scholar] [CrossRef]
- Li, S.; Cui, D.; Wang, Y.; Gao, A.; Tong, Y. Effect of Multiple Stretching on Microstructure and Mechanical Properties of PAN-Based Carbon Fibers. Carbon Lett. 2025, 35, 907–916. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, K.; Sheng, J.; An, Q.; Tao, Z.; Kang, Y.-M.; Chen, J.; Mai, L. Structural and Chemical Synergistic Effect of CoS Nanoparticles and Porous Carbon Nanorods for High-Performance Sodium Storage. Nano Energy 2017, 35, 281–289. [Google Scholar] [CrossRef]
- Fan, J.; De Coninck, J.; Wu, H.; Wang, F. A Generalized Examination of Capillary Force Balance at Contact Line: On Rough Surfaces or in Two-Liquid Systems. J. Colloid Interface Sci. 2021, 585, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Cardenes, V.; García, A.; Rodríguez, E.; Hernández Battez, A.; López-Piñeiro, S.; Ruiz de Argandoña, V.G.; Rubio-Ordoñez, Á. The Relationship between Surface Roughness, Capillarity and Mineral Composition in Roofing Slates. Minerals 2020, 10, 539. [Google Scholar] [CrossRef]
- Sun, N.; Cui, Q.; Qiao, K.; Zhang, Y.; Zhou, J.; Yan, S.; Liu, L.; Zhu, B.; Yu, B. Mussel-like Carbon Fiber/MnO2 Nanosheet Heterostructures for Mechanically Strong Carbon Fiber/Polyamide Composites with Excellent Electromagnetic Interference Shielding. Compos. Part A 2024, 184, 108260. [Google Scholar] [CrossRef]
- Gent, A.; Lin, C.-W. Model Studies of the Effect of Surface Roughness and Mechanical Interlocking on Adhesion. J. Adhes. 1990, 32, 113–125. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, G.; Feng, J.; Qi, F.; Shao, M.; Yu, Q.; Yu, G.; Ren, X.; Yuan, W.; Wang, Q.; Liu, W.; et al. In Situ Growth of CoS Nanosheets on Carbon Fiber Surfaces to Enhance the Interfacial Properties of Carbon Fiber/Norbornene Polyimide Composites. Materials 2025, 18, 2334. https://doi.org/10.3390/ma18102334
Kong G, Feng J, Qi F, Shao M, Yu Q, Yu G, Ren X, Yuan W, Wang Q, Liu W, et al. In Situ Growth of CoS Nanosheets on Carbon Fiber Surfaces to Enhance the Interfacial Properties of Carbon Fiber/Norbornene Polyimide Composites. Materials. 2025; 18(10):2334. https://doi.org/10.3390/ma18102334
Chicago/Turabian StyleKong, Guoqiang, Jianshun Feng, Fengjie Qi, Meng Shao, Qiubing Yu, Guang Yu, Xin Ren, Wenjie Yuan, Qifen Wang, Wenbo Liu, and et al. 2025. "In Situ Growth of CoS Nanosheets on Carbon Fiber Surfaces to Enhance the Interfacial Properties of Carbon Fiber/Norbornene Polyimide Composites" Materials 18, no. 10: 2334. https://doi.org/10.3390/ma18102334
APA StyleKong, G., Feng, J., Qi, F., Shao, M., Yu, Q., Yu, G., Ren, X., Yuan, W., Wang, Q., Liu, W., Zhao, X., Li, D., Hou, X., & Zhu, B. (2025). In Situ Growth of CoS Nanosheets on Carbon Fiber Surfaces to Enhance the Interfacial Properties of Carbon Fiber/Norbornene Polyimide Composites. Materials, 18(10), 2334. https://doi.org/10.3390/ma18102334