Influence of Deformation Degree on Microstructural Evolution and Tensile Behavior of TiB-Reinforced IMI834 Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Numerical Simulation Method
2.2. Experimental Procedure
3. Results and Discussion
3.1. Numerical Simulation Results
3.2. Experimental Results
4. Conclusions
- (1)
- Numerical simulation results revealed that TiBw progressively rotate toward the RD during hot rolling, becoming nearly parallel to the RD at a rolling reduction of 95%.
- (2)
- EBSD analysis showed that the grain of the hot-rolled composites is refined and forms recrystallization texture and significant [11-20]Ti // RD fiber texture. The rotation of TiBw to RD during hot rolling helps to improve the [11-20]Ti // RD fiber texture due to the special orientation relationship between TiB and Ti matrix.
- (3)
- Room-temperature tensile testing revealed that the as-cast composite exhibited a yield strength of 1117 MPa and an elongation of 5.28%. In contrast, the as-rolled composite demonstrated enhanced mechanical performance, with a yield strength of 1153 MPa and elongation of 10%. This improvement is attributed to a combined strengthening effect from grain refinement and the rotation of TiBw.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fang, M.H.; Han, Y.F.; Shi, Z.S.; Huang, G.F.; Song, J.W.; Lu, W.J. Embedding Boron into Ti Powder for Direct Laser Deposited Titanium Matrix Composite: Microstructure Evolution and the Role of Nano-TiB Network Structure. Compos. Part. B-Eng. 2021, 211, 108683. [Google Scholar] [CrossRef]
- Huang, L.J.; An, Q.; Geng, L.; Wang, S.; Jiang, S.; Cui, X.P.; Zhang, R.; Sun, F.B.; Jiao, Y.; Chen, X.; et al. Multiscale Architecture and Superior High-temperature Performance of Discontinuously Reinforced Titanium Matrix Composites. Adv. Mater. 2021, 33, 2000688. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.M.; Le, J.W.; Chen, F.; Ye, Y.Q.; Shen, C.Y.; Zhuo, Y.M.; Huang, G.F.; Han, Y.F.; Lu, W.J. Achieving Ultra-High Strength in TiB/Metastable-β Composites via Short-Process Technology. Compos. Part. A 2025, 188, 108522. [Google Scholar] [CrossRef]
- Wang, D.J.; Zhang, R.; Lin, Q.; Li, H.; Liu, G.; Yuan, S.J. Effect of Microstructure on Mechanical Properties of Net-Structured TiBw/TA15 Composite Subjected to Hot Plastic Deformation. Compos. Part. B-Eng. 2020, 187, 107798. [Google Scholar] [CrossRef]
- Zhu, X.J.; Fan, Q.B.; Liu, X.; Yu, H.; Wang, D.D. Microstructure Evolution and Mechanical Properties of a Hot-Rolled Ti Alloy. Prog. Nat. Sci. Mater. 2021, 31, 105–112. [Google Scholar] [CrossRef]
- Xie, L.C.; Ren, S.Y.; Yin, F.; Wang, F.; Qian, D.S.; Song, Y.L.; Hua, L.; Wang, L.Q.; Zhang, L.C.; Lu, W.J. Effects of Three Stress Levels on the Fatigue Properties and Fracture Mechanisms of an In-Situ Synthesized TiB/Ti-6Al-4V Titanium Matrix Composite. Mater. Charact. 2023, 195, 112511. [Google Scholar] [CrossRef]
- Chen, J.J.; Han, Y.F.; Li, S.P.; Wei, Z.C.; Le, J.W.; Shi, H.G.; Huang, G.F.; Lu, W.J.; Zhang, D. Evading the Strength and Ductility Trade-off Dilemma in Titanium Matrix Composites through Designing Bimodal Grains and Micro-Nano Reinforcements. Scripta Mater. 2023, 235, 115625. [Google Scholar] [CrossRef]
- Li, S.P.; Han, Y.F.; Wang, X.Y.; Huang, G.F.; Fang, M.H.; Shi, H.G.; Le, J.W.; Lu, W.J. Novel Strategy of Planting Nano-TiB Fibers with Ultra-Fine Network Distribution into Ti-Composite Powder and Its Thermal Transition Mechanism. Compos. Commun. 2022, 29, 101002. [Google Scholar] [CrossRef]
- Liu, H.Q.; Han, J.Z.; Han, Y.F.; Fang, M.H.; Wang, X.Y.; Huang, G.F.; Lu, W.J. Formability, Densification Behavior and Hierarchical Grain Structure of Laser-Directed Energy Deposition of TiB Reinforced Titanium Matrix Composites. Compos. Part. B-Eng. 2023, 267, 111039. [Google Scholar] [CrossRef]
- Zhong, Z.X.; Ye, J.; Wang, Y.; Ren, Y.H.; Zhang, J.W.; Zhang, B.; Ye, F. Densification Kinetics, Microstructural Evolution, and Mechanical Properties of (TiB+TiC+Ti3Si)/TC4 Composites under Pressureless Sintering. J. Alloys Compd. 2025, 1018, 179231. [Google Scholar] [CrossRef]
- Li, H.Z.; Sohrabi, S.; He, Z.C.; Lv, J.W.; Ke, H.B.; Wang, W.H.; Yang, C. Reinforcement Mechanism of In-Situ TiB Whiskers in Bimorphic-Bimodal Titanium Alloys. Mater. Sci. Eng. A 2025, 920, 147546. [Google Scholar] [CrossRef]
- Ma, X.Z.; Chen, Z.Y.; Xiang, Z.L.; Zhang, S.W.; Ding, X.X.; Li, T. Microstructure and Mechanical Properties Evolution of High-Temperature Titanium Alloys with in Situ Synthesized TiB Whiskers. J. Mater. Eng. Perform. 2025, 34, 2275–2288. [Google Scholar] [CrossRef]
- Zhao, Z.B.; Wang, Q.J.; Liu, J.R.; Yang, R. Characterizations of Microstructure and Crystallographic Orientation in a Near-a Titanium Alloy Billet. J. Alloys Compd. 2017, 712, 179–184. [Google Scholar] [CrossRef]
- Feng, Y.J.; Zhang, W.C.; Cui, G.R.; Wu, J.P.; Chen, W.Z. Effects of the Extrusion Temperature on the Microstructure and Mechanical Properties of TiBw/Ti6Al4V Composites Fabricated by Pre-Sintering and Canned Extrusion. J. Alloys Compd. 2017, 721, 383–391. [Google Scholar] [CrossRef]
- Huang, G.F.; Han, Y.F.; Guo, X.L.; Qiu, D.; Wang, L.Q.; Lu, W.J.; Zhang, D. Effects of Extrusion Ratio on Microstructural Evolution and Mechanical Behavior of in Situ Synthesized Ti-6Al-4V Composites. Mater. Sci. Eng. A 2017, 688, 155–163. [Google Scholar] [CrossRef]
- Huang, G.F.; Wang, J.H.; Wang, Q.; Lv, Y.T.; Han, Y.F.; Lu, W.J. Microstructures and Mechanical Properties of Hot Indirect Extruded in Situ (TiB + TiC)/Ti6Al4V Composites: Effect of Extrusion Temperature. Mater. Sci. Eng. A 2021, 811, 140988. [Google Scholar] [CrossRef]
- Feng, Y.J.; Lu, Y.B.; Liu, X.S.; Cao, H.Y.; Wang, W.K.; Yang, J.L.; Chen, W.Z.; Cui, G.R. High Strength and Plasticity TiBw/TA15 Composites with a Novel Columnar Network Structure. Scripta Mater. 2023, 229, 115349. [Google Scholar] [CrossRef]
- Li, Q.; Huang, S.; Gao, Y.M.; Ramamurty, U. Deformation, Fracture, and Fatigue Crack Growth Behavior in TiB-Reinforced near-α Ti Matrix Composites Fabricated Using Powder Metallurgy Technique. Mater. Sci. Eng. A 2024, 916, 147351. [Google Scholar] [CrossRef]
- Le, J.W.; Han, Y.F.; Qiu, P.K.; Li, S.P.; Huang, G.F.; Mao, J.W.; Lu, W.J. Insight into the Formation Mechanism and Interaction of Matrix/TiB Whisker Textures and Their Synergistic Effect on Property Anisotropy in Titanium Matrix Composites. J. Mater. Sci. Technol. 2022, 110, 1–13. [Google Scholar] [CrossRef]
- Yang, J.H.; Wei, S.; Chang, R.H.; Lu, Z.C.; Xiao, S.L.; Chen, Y.Y.; Zhou, H.T. Microstructure Evolution, Mechanical Properties and High Temperature Deformation of (TiB + TiC)/Ti–3.5Al–5Mo–6V–3Cr–2Sn–0.5Fe Titanium Alloy. Mater. Charact. 2022, 184, 111616. [Google Scholar] [CrossRef]
- Ma, Z.S.; Wang, S.; Huang, L.J.; An, Q.; Zhang, R.; Liu, W.Q.; Sun, F.B.; Chen, R.; Geng, L. Synergistically Enhanced Strength and Ductility of TiB/(TA15-Si) Composites: A Two-Step HIP Strategy. Compos. Part. B-Eng. 2023, 254, 110583. [Google Scholar] [CrossRef]
- Wang, S.; Huang, L.J.; Jiang, S.; Zhang, R.; Liu, B.X.; Sun, F.B.; An, Q.; Jiao, Y.; Geng, L. Microstructure Evolution and Tensile Properties of As-Rolled TiB/TA15 Composites with Network Microstructure. Mater. Sci. Eng. A 2021, 804, 140783. [Google Scholar] [CrossRef]
- Le, J.W.; Han, Y.F.; Qiu, P.K.; Huang, G.F.; Mao, J.W.; Lu, W.J. The Impact of Matrix Texture and Whisker Orientation on Property Anisotropy in Titanium Matrix Composites: Experimental and Computational Evaluation. Compos. Part. B-Eng. 2021, 212, 108682. [Google Scholar] [CrossRef]
- Ma, X.Z.; Chai, L.H.; Liu, Y.Y.; Cui, Y.P.; Shen, G.L.; Zhang, C.J.; Shu, Q.; Chen, Z.Y. TiB Whiskers Stimulated the Dynamic Recrystallization Behavior. J. Alloys Compd. 2020, 812, 152152. [Google Scholar] [CrossRef]
- Guo, X.L.; Wang, L.Q.; Wang, M.M.; Qin, J.N.; Zhang, D.; Lu, W.J. Effects of Degree of Deformation on the Microstructure, Mechanical Properties and Texture of Hybrid-Reinforced Titanium Matrix Composites. Acta Mater. 2012, 60, 2656–2667. [Google Scholar] [CrossRef]
- Qiu, P.K.; Le, J.W.; Han, Y.F.; Chen, Y.; Huang, G.F.; Mao, J.W.; Lei, L.M.; Lu, W.J. Superior Superplasticity and Multiple Accommodation Mechanisms in TiB Reinforced Near-α Titanium Matrix Composites. Compos. Part. B-Eng. 2022, 238, 109940. [Google Scholar] [CrossRef]
- Mu, X.N.; Zhang, H.M.; Cai, H.N.; Fan, Q.B.; Zhang, Z.H.; Wu, Y.; Fu, Z.J.; Yu, D.H. Microstructure Evolution and Superior Tensile Properties of Low Content Graphene Nanoplatelets Reinforced Pure Ti Matrix Composites. Mater. Sci. Eng. A 2017, 687, 164–174. [Google Scholar] [CrossRef]
- Li, L.; Ma, P.P.; Zhang, L.; Tan, H.; Li, M.Q. Fabrication of TiB Whiskers Reinforced Ti6242 Matrix Composites by Direct Laser Deposition: Powder Preparation, Microstructure and Mechanical Property. Compos. Part. B-Eng. 2024, 268, 111068. [Google Scholar] [CrossRef]
- Lecomte, J.; Schuman, C.; Philippe, M.; Zhao, X.; Esling, C. Study of Plastic Deformation in Hexagonal Metals by Interrupted In-situ EBSD Measurement. Adv. Eng. Mater. 2010, 12, 1053–1059. [Google Scholar]
- Wu, Y.Y.; Wen, Y.; Guo, A.A.; Zhou, J.; Yin, F.; Xie, L.C.; Wang, L.Q.; Hua, L.; Lu, W.J.; Zhang, L.C. Grain Boundary and Texture Evolution of TiB/Ti–2Al–6Sn Titanium Matrix Composite under Electroshocking Treatment. J. Mater. Res. Tech. 2023, 27, 4305–4316. [Google Scholar] [CrossRef]
- Wei, Z.C.; Han, Y.F.; Li, S.P.; Zong, N.; Le, J.W.; Zhang, S.W.; Chen, J.J.; Zhong, S.J.; Huang, G.F.; Lu, W.J. Interfacial Modification Strategy to Break through the Strength and Ductility Trade-off in Multi-Walled Carbon Nanotubes Reinforced Titanium Matrix Composites. Mater. Sci. Eng. A 2023, 880, 145284. [Google Scholar] [CrossRef]
- Yao, M.X.; Yao, Z.J.; Tao, X.W.; Huang, C.J.; Zhang, S.S. Alleviating Plastic Anisotropy of Boron Modified Titanium Alloy by Constructing Layered Structure via Electron Beam Directed Energy Deposition. Addit. Manuf. 2022, 50, 102561. [Google Scholar] [CrossRef]
- Gey, N.; Bocher, P.; Uta, E.; Germain, L.; Humbert, M. Texture and Microtexture Variations in a Near-a Titanium Forged Disk of Bimodal Microstructure. Acta Mater. 2012, 60, 2647–2655. [Google Scholar] [CrossRef]
- Feng, H.B.; Zhou, Y.; Jia, D.C.; Meng, Q.C.; Rao, J.C. Growth Mechanism of in Situ TiB Whiskers in Spark Plasma Sintered TiB/Ti Metal Matrix Composites. Cryst. Growth Des. 2006, 6, 1626–1630. [Google Scholar] [CrossRef]
- Liu, L.; Li, S.F.; Liu, H.Y.; Wang, S.D.; Hui, D.X.; Zhang, X.; Kariya, S.; Issariyapat, A.; Umeda, J.; Kondoh, K.; et al. Microstructure and Mechanical Properties of Nano TiB Whisker-Reinforced Titanium Matrix Composites Using Atomized Ti–TiB Composite Powder as Raw Materials. Compos. Part. B-Eng. 2025, 298, 112392. [Google Scholar] [CrossRef]
- Guo, X.L.; Wang, L.Q.; Wang, M.M.; Qin, J.N.; Zhang, D.; Lu, W.J. Texture Evolution of Hot-Rolled, near-a-Based Titanium Matrix Composites. Metall. Mater. Trans. A 2012, 43, 3257–3263. [Google Scholar] [CrossRef]
- Loucif, A.; Figueiredo, R.B.; Baudin, T.; Brisset, F.; Chemam, R.; Langdon, T.G. Ultrafine Grains and the Hall–Petch Relationship in an Al–Mg–Si Alloy Processed by High-Pressure Torsion. Mater. Sci. Eng. A 2012, 532, 139–145. [Google Scholar] [CrossRef]
- Wu, H.D.; Li, S.P.; Han, Y.F.; Huang, G.F.; Mao, J.W.; Lu, W.J. Understanding the Confined TiB Fiber-like Structure for Strength-Ductility Combination of Discontinuous-Reinforced Titanium Matrix Composites. Mater. Sci. Eng. A 2022, 852, 143645. [Google Scholar] [CrossRef]
- Zherebtsov, S.; Ozerov, M.; Povolyaeva, E.; Sokolovsky, V.; Stepanov, N.; Moskovskikh, D.; Salishchev, G. Effect of Hot Rolling on the Microstructure and Mechanical Properties of a Ti-15Mo/TiB Metal-Matrix Composite. Metals 2020, 10, 40. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Z.H.; Su, T.J.; Cheng, X.W.; Li, X.Y.; Zhang, S.Z.; He, J.Y. A TiB Whisker-Reinforced Titanium Matrix Composite with Controllable Orientation: A Novel Method and Superior Strengthening Effect. Mater. Sci. Eng. A 2022, 830, 142309. [Google Scholar] [CrossRef]
- Ma, F.C.; Lu, W.J.; Qin, J.N.; Zhang, D. Microstructure Evolution of Near- α Titanium Alloys during Thermomechanical Processing. Mater. Sci. Eng. A 2006, 416, 59–65. [Google Scholar] [CrossRef]
- Gorsse, S.; Miracle, D.B. Mechanical Properties of Ti-6Al-4V/TiB Composites with Randomly Oriented and Aligned TiB Reinforcements. Acta Mater. 2003, 51, 2427–2442. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Liu, M.; Zhao, Z.; Li, J.; Fan, M.; Li, Z. Influence of Deformation Degree on Microstructural Evolution and Tensile Behavior of TiB-Reinforced IMI834 Composites. Materials 2025, 18, 2306. https://doi.org/10.3390/ma18102306
Wang B, Liu M, Zhao Z, Li J, Fan M, Li Z. Influence of Deformation Degree on Microstructural Evolution and Tensile Behavior of TiB-Reinforced IMI834 Composites. Materials. 2025; 18(10):2306. https://doi.org/10.3390/ma18102306
Chicago/Turabian StyleWang, Baobing, Mingliang Liu, Zhiwei Zhao, Jiuxiao Li, Minhao Fan, and Ziyi Li. 2025. "Influence of Deformation Degree on Microstructural Evolution and Tensile Behavior of TiB-Reinforced IMI834 Composites" Materials 18, no. 10: 2306. https://doi.org/10.3390/ma18102306
APA StyleWang, B., Liu, M., Zhao, Z., Li, J., Fan, M., & Li, Z. (2025). Influence of Deformation Degree on Microstructural Evolution and Tensile Behavior of TiB-Reinforced IMI834 Composites. Materials, 18(10), 2306. https://doi.org/10.3390/ma18102306