A Concise Review of the Control and Assessment of Magnetic Affinity Particle Assembly for Live Cell Analyses: State of the Art and Challenges
Abstract
:1. Introduction
2. Magnetic Affinity Clustering Control
2.1. Magnetic Affinity Clusters: Design and Functionality
2.2. Sensing Formats for Magnetic Affinity Clusters
2.2.1. Fluorescence Microscopy Assay
2.2.2. Flow Cytometry Assays
2.2.3. Optical Detection Based on Asynchronous Rotation
2.2.4. Electrical Impedance Spectroscopy (EIS)
3. Biological Analyses Based on Magnetic Affinity Capture
3.1. Bacteria Recognition, Separation from the Samples, and Characterization
Analysis of Other Cells or Bioparticles
3.2. Circulating Tumor Cells
Biomarkers
Characterization Method | Type of Analysis | Advantages | Disadvantages | Limit of Detection | Ref. |
---|---|---|---|---|---|
Fluorescence microscopy assay | Mostly qualitative | Visualization of cluster formation, minimal sample preparation | Photobleaching, resolution limitation, quantitative challenges | - | [36] |
Scanning electron microscopy (SEM) | Qualitative | Detailed 3D imaging of cluster formation, versatility | Cost Needs to be used in combination with other techniques for in-depth characterization | - | [29] |
Electrical Impedance Spectroscopy (EIS) | Quantitative | Label-free detection, non-invasive | Limited information on cluster composition, complex data interpretation | 1 ng/mL | [69] |
Flow cytometry | Quantitative | Rapid and detailed size analysis | Struggle to measure large clusters, sample preparation accurately | 2.5 ng/mL - | [21,65] |
Surface-enhanced Raman spectroscopy (SERS) | Quantitative | Real-time monitoring, high spatial resolution | Instrumentation and expertise requirements; Analyzing mostly molecules on the surface of immunomagnetic clusters of those near the cluster surface | 100 cells/mL 5.0 × 106 TCID50/mL | [70,71] |
Integrated magneto-affine selection, and magneto-phoretically assisted two-frequency electrical impedance assay | Quantitative | Label-free detection, non-invasive, information on cluster composition, automated data interpretation; Suitable for both large and small MPs; Concentration domain suitable for UTI assays. Suitable for phenotypic antimicrobial susceptibility testing | Novelty of the technique, with insufficient validation Not yet demonstrated for multiplexed formats | 105 CFU/mL | [22,32] |
4. Open Challenges
4.1. Improvement of Magnetic Affinity Capture
- (i)
- Firm conjugation on the matrices (e.g., covalent attachment);
- (ii)
- Immobilized in a highly controllable and site-specific manner;
- (iii)
- After functionalization, the final support should be demonstrated to be completely inert to avoid false positives (e.g., preventing unspecific interaction with either the detection antibodies or nonspecific clustering).
Immobilization Strategies Allowing Control of Antibody Orientation
4.2. Issues in System Development and Validation
4.2.1. MP Quality
4.2.2. Capture Efficiency in MAC
4.2.3. Magnetic Affinity Capture Effect on Cell Viability and Dynamics
4.2.4. Development and Validation of Hybrid Methods
- Hybrid electro-optic assays of MAC
- Hybrid Surface-Enhanced Raman Spectroscopy (SERS);
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schuster, O.; Atiya-Nasagi, Y.; Rosen, O.; Zvi, A.; Glinert, I.; Ben Shmuel, A.; Weiss, S.; Laskar, O.; Feldberg, L. Coupling immuno-magnetic capture with LC–MS/MS(MRM) as a sensitive, reliable, and specific assay for SARS-CoV-2 identification from clinical samples. Anal. Bioanal. Chem. 2022, 414, 1949–1962. [Google Scholar] [CrossRef] [PubMed]
- Dalili, A.; Samiei, E.; Hoorfar, M. A review of sorting, separation and isolation of cells and microbeads for biomedical applications: Microfluidic approaches. Analyst 2019, 144, 87–113. [Google Scholar] [CrossRef]
- Plouffe, B.D.; Murthy, S.K.; Lewis, L.H. Fundamentals and application of magnetic particles in cell isolation and enrichment: A review. Rep. Prog. Phys. 2014, 78, 016601. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-E.; Van Tieu, M.; Hwang, S.Y.; Lee, M.-H. Magnetic Particles: Their Applications from Sample Preparations to Biosensing Platforms. Micromachines 2020, 11, 302. [Google Scholar] [CrossRef]
- Gou, Y.; Liu, J.; Sun, C.; Wang, P.; You, Z.; Ren, D. Inertial-Assisted Immunomagnetic Bioplatform towards Efficient Enrichment of Circulating Tumor Cells. Biosensors 2021, 11, 183. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Yadav, M.D. Magnetic Nanoparticles: A Comprehensive Review from Synthesis to Biomedical Frontiers. Langmuir 2024, 40, 17239–17269. [Google Scholar] [CrossRef]
- Rezaei, B.; Yari, P.; Sanders, S.M.; Wang, H.; Chugh, V.K.; Liang, S.; Mostufa, S.; Xu, K.; Wang, J.; Gómez-Pastora, J.; et al. Magnetic Nanoparticles: A Review on Synthesis, Characterization, Functionalization, and Biomedical Applications. Small 2023, 20, e2304848. [Google Scholar] [CrossRef]
- Rotariu, L.; Lagarde, F.; Jaffrezic-Renault, N.; Bala, C. Electrochemical biosensors for fast detection of food contaminants—Trends and perspective. TrAC Trends Anal. Chem. 2016, 79, 80–87. [Google Scholar] [CrossRef]
- Stiufiuc, G.F.; Stiufiuc, R.I. Magnetic Nanoparticles: Synthesis, Characterization, and Their Use in Biomedical Field. Appl. Sci. 2024, 14, 1623. [Google Scholar] [CrossRef]
- Wang, S.; Xu, J.; Li, W.; Sun, S.; Gao, S.; Hou, Y. Magnetic Nanostructures: Rational Design and Fabrication Strategies toward Diverse Applications. Chem. Rev. 2022, 122, 5411–5475. [Google Scholar] [CrossRef]
- Kang, J.; Jang, H.; Joo, H.; Lee, G.Y.; Kim, H.; Cho, U.; Bang, H.; Jang, J.; Han, S.; Kim, D.Y.; et al. Blood culture-free ultra-rapid antimicrobial susceptibility testing. Nature 2024, 632, 893–902. [Google Scholar] [CrossRef]
- Agaylan, A.; Meyer, O.; Ahrens, N.; Dudenhausen, J.; Bombard, S.; Salama, A. A rapid gel agglutination test for the determination of fetomaternal haemorrhage. Transfus. Med. 2007, 17, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Moser, Y.; Lehnert, T.; Gijs, M.A.M. On-chip immuno-agglutination assay with analyte capture by dynamic manipulation of superparamagnetic beads. Lab Chip 2009, 9, 3261–3267. [Google Scholar] [CrossRef]
- Alejo-Cancho, I.; Navero-Castillejos, J.; Peiró-Mestres, A.; Albarracín, R.; Barrachina, J.; Navarro, A.; Gonzalo, V.; Pastor, V.; Muñoz, J.; Martínez, M.J. Evaluation of a novel microfluidic immuno-magnetic agglutination assay method for detection of dengue virus NS1 antigen. PLoS Neglected Trop. Dis. 2020, 14, e0008082. [Google Scholar] [CrossRef]
- Moeller, M.E.; Fock, J.; Pah, P.; Veras, A.D.L.C.; Bade, M.; Donolato, M.; Israelsen, S.B.; Eugen-Olsen, J.; Benfield, T.; Engsig, F.N. Evaluation of commercially available immuno-magnetic agglutination in comparison to enzyme-linked immunosorbent assays for rapid point-of-care diagnostics of COVID-19. J. Med. Virol. 2021, 93, 3084–3091. [Google Scholar] [CrossRef]
- Ali, A.; Shah, T.; Ullah, R.; Zhou, P.; Guo, M.; Ovais, M.; Tan, Z.; Rui, Y. Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications. Front. Chem. 2021, 9, 629054. [Google Scholar] [CrossRef] [PubMed]
- Eivazzadeh-Keihan, R.; Bahreinizad, H.; Amiri, Z.; Aliabadi, H.A.M.; Salimi-Bani, M.; Nakisa, A.; Davoodi, F.; Tahmasebi, B.; Ahmadpour, F.; Radinekiyan, F.; et al. Functionalized magnetic nanoparticles for the separation and purification of proteins and peptides. TrAC Trends Anal. Chem. 2021, 141, 116291. [Google Scholar] [CrossRef]
- Gheorghiu, E. Detection of pathogenic bacteria by magneto-immunoassays: A review. J. Biomed. Res. 2021, 35, 277. [Google Scholar] [CrossRef]
- Lambert, C.J.; Jayamohan, H.; Gale, B.K.; Laurentius, L.B.; Patel, D.; Hansen, M.; Mahmood, T.; Sant, H.J. Electrochemical Detection of SARS-CoV-2 Using Immunomagnetic Separation and Gold Nanoparticles on Unmodified Screen-Printed Carbon Electrodes. Appl. Sci. 2023, 13, 10007. [Google Scholar] [CrossRef]
- Ben Aissa, A.; Araújo, B.; Julián, E.; Zanoni, M.V.B.; Pividori, M.I. Immunomagnetic Separation Improves the Detection of Mycobacteria by Paper-Based Lateral and Vertical Flow Immunochromatographic Assays. Sensors 2021, 21, 5992. [Google Scholar] [CrossRef]
- Sanjaya, K.; Ranzoni, A.; Hung, J.; Blaskovich, M.A.; Watterson, D.; Young, P.R.; Cooper, M.A. Flow-cytometry detection of fluorescent magnetic nanoparticle clusters increases sensitivity of dengue immunoassay. Anal. Chim. Acta 2020, 1107, 85–91. [Google Scholar] [CrossRef] [PubMed]
- David, S.; Cârtoc, R.-E.; Petcu, I.-C.; Polonschii, C.; Petran, A.; Turcu, R.; Bratu, D.; Gheorghiu, M.; Gheorghiu, E. In situ detection and viability assessment of target microorganisms. Biosens. Bioelectron. 2023, 245, 115821. [Google Scholar] [CrossRef]
- Swami, P.; Verma, G.; Holani, A.; Kamaraju, S.; Manchanda, V.; Sritharan, V.; Gupta, S. Rapid antimicrobial susceptibility profiling using impedance spectroscopy. Biosens. Bioelectron. 2022, 200, 113876. [Google Scholar] [CrossRef]
- Kim, J.; Mohamed, M.A.A.; Zagorovsky, K.; Chan, W.C. State of diagnosing infectious pathogens using colloidal nanomaterials. Biomaterials 2017, 146, 97–114. [Google Scholar] [CrossRef]
- Hughes, R.; Fishman, A.; Lamb-Riddell, K.; Muñoz, V.S.; Champneys, A.; Kiely, J.; Luxton, R. Modelling a dynamic magneto-agglutination bioassay. Biosens. Bioelectron. 2022, 222, 114745. [Google Scholar] [CrossRef]
- Wang, Z.; Cai, R.; Gao, Z.; Yuan, Y.; Yue, T. Immunomagnetic separation: An effective pretreatment technology for isolation and enrichment in food microorganisms detection. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3802–3824. [Google Scholar] [CrossRef] [PubMed]
- David, S.; Munteanu, R.-E.; Tițoiu, A.-M.; Petcu, I.-C.; Cernat, I.-C.; Leancu, C.; Gheorghiu, M.; Gheorghiu, E. Direct, Rapid Detection of Pathogens from Urine Samples. Materials 2022, 15, 7640. [Google Scholar] [CrossRef] [PubMed]
- Gómez, M.M.; Molina-Moya, B.; Souza, B.d.A.; Zanoni, M.V.B.; Julián, E.; Domínguez, J.; Pividori, M.I. Improved biosensing of Legionella by integrating filtration and immunomagnetic separation of the bacteria retained in filters. Microchim. Acta 2024, 191, 82. [Google Scholar] [CrossRef]
- Park, J.Y.; Park, K.; Ok, G.; Chang, H.-J.; Park, T.J.; Choi, S.-W.; Lim, M.-C. Detection of Escherichia coli O157:H7 Using Automated Immunomagnetic Separation and Enzyme-Based Colorimetric Assay. Sensors 2020, 20, 1395. [Google Scholar] [CrossRef]
- Abedini-Nassab, R.; Shourabi, R. High-throughput precise particle transport at single-particle resolution in a three-dimensional magnetic field for highly sensitive bio-detection. Sci. Rep. 2022, 12, 6380. [Google Scholar] [CrossRef]
- Schrittwieser, S.; Pelaz, B.; Parak, W.J.; Lentijo-Mozo, S.; Soulantica, K.; Dieckhoff, J.; Ludwig, F.; Guenther, A.; Tschöpe, A.; Schotter, J. Homogeneous Biosensing Based on Magnetic Particle Labels. Sensors 2016, 16, 828. [Google Scholar] [CrossRef] [PubMed]
- David, S.; Polonschii, C.; Gheorghiu, M.; Bratu, D.; Dobre, A.; Gheorghiu, E. Assessment of pathogenic bacteria using periodic actuation. Lab. Chip 2013, 13, 3192–3198. [Google Scholar] [CrossRef]
- Baudry, J.; Rouzeau, C.; Goubault, C.; Robic, C.; Cohen-Tannoudji, L.; Koenig, A.; Bertrand, E.; Bibette, J. Acceleration of the recognition rate between grafted ligands and receptors with magnetic forces. Proc. Natl. Acad. Sci. USA 2006, 103, 16076–16078. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Yuan, C.; Li, T.; Fock, J.; Svedlindh, P.; Tian, B. Optomagnetic biosensors: Volumetric sensing based on magnetic actuation-induced optical modulations. Biosens. Bioelectron. 2022, 215, 114560. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, A.H.; Khorasani, M.T.; Faghih, Z.; Farjadian, F. Effects of different quantities of antibody conjugated with magnetic nanoparticles on cell separation efficiency. Heliyon 2020, 6, e03677. [Google Scholar] [CrossRef]
- Hasan, M.; Choi, J.; Akter, H.; Kang, H.; Ahn, M.; Lee, S. Antibody-Conjugated Magnetic Nanoparticle Therapy for Inhibiting T-Cell Mediated Inflammation. Adv. Sci. 2023, 11, e2307148. [Google Scholar] [CrossRef]
- Tao, T.; Li, Z.; Xu, S.; Rehman, S.U.; Chen, R.; Xu, H.; Xia, H.; Zhang, J.; Zhao, H.; Wang, J.; et al. Boosting SARS-CoV-2 Enrichment with Ultrasmall Immunomagnetic Beads Featuring Superior Magnetic Moment. Anal. Chem. 2023, 95, 11542–11549. [Google Scholar] [CrossRef]
- Chang, Z.-M.; Zhou, H.; Yang, C.; Zhang, R.; You, Q.; Yan, R.; Li, L.; Ge, M.; Tang, Y.; Dong, W.-F.; et al. Biomimetic immunomagnetic gold hybrid nanoparticles coupled with inductively coupled plasma mass spectrometry for the detection of circulating tumor cells. J. Mater. Chem. B 2020, 8, 5019–5025. [Google Scholar] [CrossRef]
- Cheng, E.L.; Kacherovsky, N.; Pun, S.H. Aptamer-Based Traceless Multiplexed Cell Isolation Systems. ACS Appl. Mater. Interfaces 2022, 14, 44136–44146. [Google Scholar] [CrossRef]
- Leuthner, M.; Helou, M.; Reisbeck, M.; Hayden, O. Advancing magnetic flow cytometry to quantitative epitope analysis in high hematocrit conditions for point-of-care testing. Biosens. Bioelectron. 2025, 268, 116867. [Google Scholar] [CrossRef]
- Burinaru, T.A.; Adiaconiţă, B.; Avram, M.; Preda, P.; Enciu, A.-M.; Chiriac, E.; Mărculescu, C.; Constantin, T.; Militaru, M. Electrochemical impedance spectroscopy based microfluidic biosensor for the detection of circulating tumor cells. Mater. Today Commun. 2022, 32, 104016. [Google Scholar] [CrossRef]
- Kinnunen, P.; McNaughton, B.H.; Albertson, T.; Sinn, I.; Mofakham, S.; Elbez, R.; Newton, D.W.; Hunt, A.; Kopelman, R. Self-Assembled Magnetic Bead Biosensor for Measuring Bacterial Growth and Antimicrobial Susceptibility Testing. Small 2012, 8, 2477–2482. [Google Scholar] [CrossRef] [PubMed]
- Kinnunen, P.; Carey, M.E.; Craig, E.; Brahmasandra, S.N.; McNaughton, B.H. Rapid bacterial growth and antimicrobial response using self-assembled magnetic bead sensors. Sens. Actuators B Chem. 2014, 190, 265–269. [Google Scholar] [CrossRef]
- Uddin, R.; Burger, R.; Donolato, M.; Fock, J.; Creagh, M.; Hansen, M.F.; Boisen, A. Lab-on-a-disc agglutination assay for protein detection by optomagnetic readout and optical imaging using nano- and micro-sized magnetic beads. Biosens. Bioelectron. 2016, 85, 351–357. [Google Scholar] [CrossRef]
- Tsai, S.-L.; Wey, J.-J.; Lai, S.-C. Investigation and Demonstration for immunoassay technology based on impedance Amplifies of magnetic and dielectric microbeads. Microchem. J. 2024, 207, 111899. [Google Scholar] [CrossRef]
- Akhtarian, S.; Brar, S.K.; Rezai, P. Electrochemical Impedance Spectroscopy-Based Microfluidic Biosensor Using Cell-Imprinted Polymers for Bacteria Detection. Biosensors 2024, 14, 445. [Google Scholar] [CrossRef]
- Zamfir, L.-G.; Geana, I.; Bourigua, S.; Rotariu, L.; Bala, C.; Errachid, A.; Jaffrezic-Renault, N. Highly sensitive label-free immunosensor for ochratoxin A based on functionalized magnetic nanoparticles and EIS/SPR detection. Sens. Actuators B Chem. 2011, 159, 178–184. [Google Scholar] [CrossRef]
- Ahmed, A.; Rushworth, J.V.; Hirst, N.A.; Millner, P.A. Biosensors for Whole-Cell Bacterial Detection. Clin. Microbiol. Rev. 2014, 27, 631–646. [Google Scholar] [CrossRef] [PubMed]
- Özsoylu, D.; Aliazizi, F.; Wagner, P.; Schöning, M.J. Template bacteria-free fabrication of surface imprinted polymer-based biosensor for E. coli detection using photolithographic mimics: Hacking bacterial adhesion. Biosens. Bioelectron. 2024, 261, 116491. [Google Scholar] [CrossRef]
- Polonschii, C.; David, S.; Gáspár, S.; Gheorghiu, M.; Rosu-Hamzescu, M.; Gheorghiu, E. Complementarity of EIS and SPR to Reveal Specific and Nonspecific Binding When Interrogating a Model Bioaffinity Sensor; Perspective Offered by Plasmonic Based EIS. Anal. Chem. 2014, 86, 8553–8562. [Google Scholar] [CrossRef]
- Stilman, W.; Yongabi, D.; Sichani, S.B.; Thesseling, F.; Deschaume, O.; Putzeys, T.; Pinto, T.C.; Verstrepen, K.; Bartic, C.; Wübbenhorst, M.; et al. Detection of yeast strains by combining surface-imprinted polymers with impedance-based readout. Sens. Actuators B Chem. 2021, 340, 129917. [Google Scholar] [CrossRef]
- Chan, K.Y.; Ye, W.W.; Zhang, Y.; Xiao, L.D.; Leung, P.H.; Li, Y.; Yang, M. Ultrasensitive detection of E. coli O157:H7 with biofunctional magnetic bead concentration via nanoporous membrane based electrochemical immunosensor. Biosens. Bioelectron. 2013, 41, 532–537. [Google Scholar] [CrossRef]
- Liu, W.; Wu, Q.; Wang, W.; Xu, X.; Yang, C.; Song, Y. Enhanced molecular recognition on microfluidic affinity interfaces. TrAC Trends Anal. Chem. 2022, 157, 116827. [Google Scholar] [CrossRef]
- Astolpho, H.A.; Mariúba, L.A.M.; Chaves, Y.O.; Glória, J.C.; DE Almeida, M.E.M.; Machado-De-Ávila, R.A.; Generoso, C.M.; Batista, J.C.; Nogueira, P.A.; Orlandi, P.P. Development of an antibody against EtpA from enterotoxigenic Escherichia coli and evaluation of its use for bacterial isolation using magnetic beads. An. Acad. Bras. Cienc. 2024, 96, e20231208. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, J.; Yin, X.; Deng, Z.; Liu, X.; Yang, D.; Zhao, L.; Sun, J.; Wang, J.; Zhang, D. Joint-detection of Salmonella typhimurium and Escherichia coli O157:H7 by an immersible amplification dip-stick immunoassay. Biosens. Bioelectron. 2023, 224, 115075. [Google Scholar] [CrossRef]
- Lian, F.; Wang, D.; Yao, S.; Ge, L.; Wang, Y.; Zhao, Y.; Zhao, J.; Song, X.; Zhao, C.; Li, J.; et al. A detection method of Escherichia coli O157:H7 based on immunomagnetic separation and aptamers-gold nanoparticle probe quenching Rhodamine B’s fluorescence. Food Sci. Biotechnol. 2021, 30, 1129–1138. [Google Scholar] [CrossRef]
- Shi, J.; Chi, H.; Cao, A.; Song, Y.; Zhu, M.; Zhang, L.; Xu, F.; Huang, J. Development of IMBs–qPCR detection method for Yersinia enterocolitica based on the foxA gene. Arch. Microbiol. 2021, 203, 4653–4662. [Google Scholar] [CrossRef]
- Zeng, M.; Zhou, R.; He, T.; Hu, F.; Liu, W.; Gan, N.; Yu, S. Bioluminescence assay for rapid detection of live Staphylococcus aureus based on the enrichment of egg yolk antibody modified magnetic metal organic framework immunobeads. Anal. 2024, 149, 876–884. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Meng, X.; Li, L.; Liu, Y.; Xu, K.; Zhao, C.; Wang, J.; Song, X.; Li, J.; Jin, M. Rapid detection of Vibrio parahaemolyticus using magnetic nanobead-based immunoseparation and quantum dot-based immunofluorescence. RSC Adv. 2021, 11, 38638–38647. [Google Scholar] [CrossRef]
- Teng, M.; Hao, M.; Ding, C.; Wang, L.; Shen, H.; Yu, S.; Chen, L.; Yang, F. Rapid detection of Saccharomyces cerevisiae with boronic acid-decorated multivariate metal–organic frameworks and aptamers. Analyst 2023, 148, 4213–4218. [Google Scholar] [CrossRef]
- Houser, B.J.; Camacho, A.N.; Bryner, C.A.; Ziegler, M.; Wood, J.B.; Spencer, A.J.; Gautam, R.P.; Okonkwo, T.P.; Wagner, V.; Smith, S.J.; et al. Bacterial Binding to Polydopamine-Coated Magnetic Nanoparticles. ACS Appl. Mater. Interfaces 2024, 16, 58226–58240. [Google Scholar] [CrossRef] [PubMed]
- Quintana-Sánchez, S.; Barrios-Gumiel, A.; Sánchez-Nieves, J.; Copa-Patiño, J.L.; de la Mata, F.J.; Gómez, R. Bacteria capture with magnetic nanoparticles modified with cationic carbosilane dendritic systems. Mater. Sci. Eng. C 2022, 133, 112622. [Google Scholar] [CrossRef] [PubMed]
- Zia, M.A.; Shoukat, M.; Kaleem, I.; Bashir, S. Nanoparticles as a novel key driver for the isolation and detection of circulating tumour cells. Sci. Rep. 2024, 14, 22580. [Google Scholar] [CrossRef]
- Pipatwatcharadate, C.; Iyer, P.R.; Pissuwan, D. Recent Update Roles of Magnetic Nanoparticles in Circulating Tumor Cell (CTC)/Non-CTC Separation. Pharmaceutics 2023, 15, 2482. [Google Scholar] [CrossRef]
- Doswald, S.; Herzog, A.F.; Zeltner, M.; Zabel, A.; Pregernig, A.; Schläpfer, M.; Siebenhüner, A.; Stark, W.J.; Beck-Schimmer, B. Removal of Circulating Tumor Cells from Blood Samples of Cancer Patients Using Highly Magnetic Nanoparticles: A Translational Research Project. Pharmaceutics 2022, 14, 1397. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Lin, Z.; Zhao, C.; Liu, L.; Zhang, K.; Lai, J.; Meng, Q.-F.; Yao, G.; Huang, Q.; Zhao, X.-Z.; et al. Neutrophil membrane-coated immunomagnetic nanoparticles for efficient isolation and analysis of circulating tumor cells. Biosens. Bioelectron. 2022, 213, 114425. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Y.; Chen, Y.; Wang, X.; Kang, K.; Zhu, N.; Wu, Y.; Yi, Q. Floating Immunomagnetic Microspheres for Highly Efficient Circulating Tumor Cell Isolation under Facile Magnetic Manipulation. ACS Sens. 2023, 8, 1858–1866. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, X.; Natalia, A.; Tang, C.S.L.; Ang, C.B.T.; Ong, C.-A.J.; Teo, M.C.C.; So, J.B.Y.; Shao, H. Dual-Selective Magnetic Analysis of Extracellular Vesicle Glycans. Matter 2020, 2, 150–166. [Google Scholar] [CrossRef]
- de Andrade, B.C.; Gennari, A.; Renard, G.; Nervis, B.D.R.; Benvenutti, E.V.; Costa, T.M.H.; Nicolodi, S.; da Silveira, N.P.; Chies, J.M.; Volpato, G.; et al. Synthesis of magnetic nanoparticles functionalized with histidine and nickel to immobilize His-tagged enzymes using β-galactosidase as a model. Int. J. Biol. Macromol. 2021, 184, 159–169. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Sabharwal, P.K.; Jain, S.; Kaur, A.; Singh, H. Functionalized polymeric magnetic nanoparticle assisted SERS immunosensor for the sensitive detection of S. typhimurium. Anal. Chim. Acta 2019, 1067, 98–106. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Qu, H.; Hao, L.; Shao, T.; Wang, K.; Xia, Z.; Li, Z.; Li, Q. SERS-based immunomagnetic bead for rapid detection of H5N1 influenza virus. Influ. Other Respir. Viruses 2023, 17, e13114. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Chen, Z.; Li, T.; Ye, X.; Luo, Q.; Lai, W. Comparison of oriented and non-oriented antibody conjugation with AIE fluorescence microsphere for the immunochromatographic detection of enrofloxacin. Food Chem. 2023, 429, 136816. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Jiang, D.; De Silva, P.I.T.; Song, B.; Rusling, J.F. Restricted Proteolysis and LC-MS/MS To Evaluate the Orientation of Surface-Immobilized Antibodies. Anal. Chem. 2019, 91, 4913–4919. [Google Scholar] [CrossRef]
- Gao, S.; Guisán, J.M.; Rocha-Martin, J. Oriented immobilization of antibodies onto sensing platforms—A critical review. Anal. Chim. Acta 2022, 1189, 338907. [Google Scholar] [CrossRef]
- Laborie, E.; Le-Minh, V.; Mai, T.D.; Ammar, M.; Taverna, M.; Smadja, C. Analytical methods of antibody surface coverage and orientation on bio-functionalized magnetic beads: Application to immunocapture of TNF-α. Anal. Bioanal. Chem. 2021, 413, 6425–6434. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.V.T.; Smadja, C.; Taverna, M.; Mai, T.K.; Halgand, F.; Mai, T.D. Immuno-capture of biomolecules on functionalized magnetic beads: From characterization to fluorescent detection of a biomarker for Alzheimer’s disease toward high performance biosensing. Talanta Open 2023, 8, 100264. [Google Scholar] [CrossRef]
- Oh, J.Y.; An, E.-K.; Jana, B.; Kim, H.; Jin, S.; Yang, G.; Kim, J.; Choi, E.; Jin, J.-O.; Ryu, J.-H. Antibody plug-and-playable nanoparticles as a facile and versatile platform for targeted drug delivery. Chem. Eng. J. 2023, 470, 144357. [Google Scholar] [CrossRef]
- Carmody, C.M.; Nugen, S.R. Monomeric streptavidin phage display allows efficient immobilization of bacteriophages on magnetic particles for the capture, separation, and detection of bacteria. Sci. Rep. 2023, 13, 16207. [Google Scholar] [CrossRef]
- Castro-Hinojosa, C.; Del Sol-Fernández, S.; Moreno-Antolín, E.; Martín-Gracia, B.; Ovejero, J.G.; de la Fuente, J.M.; Grazú, V.; Fratila, R.M.; Moros, M. A Simple and Versatile Strategy for Oriented Immobilization of His-Tagged Proteins on Magnetic Nanoparticles. Bioconjugate Chem. 2023, 34, 2275–2292. [Google Scholar] [CrossRef]
- Rahmatzadeh, S.; Sardarian, A.R.; Nikmanesh, S. Decorated Magnetic Nanocatalyst with Trinitriloacetic Acid as a Heterogeneous Catalyst used in the Synthesis of Pyrimido[4,5]quinoline-2,4-diones. ChemistrySelect 2024, 9, e202302735. [Google Scholar] [CrossRef]
- Zhu, L.; Chang, Y.; Li, Y.; Qiao, M.; Liu, L. Biosensors Based on the Binding Events of Nitrilotriacetic Acid–Metal Complexes. Biosensors 2023, 13, 507. [Google Scholar] [CrossRef]
- Lu, Z.-Y.; Chan, Y.-H. The importance of antibody orientation for enhancing sensitivity and selectivity in lateral flow immunoassays. Sens. Diagn. 2024, 3, 1613–1634. [Google Scholar] [CrossRef]
- Susini, V.; Ferraro, G.; Fierabracci, V.; Ursino, S.; Sanguinetti, C.; Caponi, L.; Romiti, N.; Rossi, V.L.; Sanesi, A.; Paolicchi, A.; et al. Orientation of capture antibodies on gold nanoparticles to improve the sensitivity of ELISA-based medical devices. Talanta 2023, 260, 124650. [Google Scholar] [CrossRef]
- Vasilescu, A.; Gáspár, S.; Gheorghiu, M.; Polonschii, C.; Banciu, R.M.; David, S.; Gheorghiu, E.; Marty, J.-L. Promising Solutions to Address the Non-Specific Adsorption in Biosensors Based on Coupled Electrochemical-Surface Plasmon Resonance Detection. Chemosensors 2025, 13, 92. [Google Scholar] [CrossRef]
- Arona, J.C.; Hall, T.J.; Mckinnirey, F.; Deng, F. Comparison of four commercial immunomagnetic separation kits for the detection of Cryptosporidium. J. Water Health 2023, 21, 1580–1590. [Google Scholar] [CrossRef] [PubMed]
- Gerzsenyi, T.B.; Ilosvai, Á.M.; Szilágyi, G.; Szőri, M.; Váradi, C.; Viskolcz, B.; Vanyorek, L.; Szőri-Dorogházi, E. A Simplified and Efficient Method for Production of Manganese Ferrite Magnetic Nanoparticles and Their Application in DNA Isolation. Int. J. Mol. Sci. 2023, 24, 2156. [Google Scholar] [CrossRef]
- Kreuter, J.; Bica-Schröder, K.; Pálvölgyi, Á.M.; Krska, R.; Sommer, R.; Farnleitner, A.H.; Kolm, C.; Reischer, G.H. A novel ionic liquid-based approach for DNA and RNA extraction simplifies sample preparation for bacterial diagnostics. Anal. Bioanal. Chem. 2024, 416, 7109–7120. [Google Scholar] [CrossRef]
- Rosenfeldt, S.; Mickoleit, F.; Jörke, C.; Clement, J.H.; Markert, S.; Jérôme, V.; Schwarzinger, S.; Freitag, R.; Schüler, D.; Uebe, R.; et al. Towards standardized purification of bacterial magnetic nanoparticles for future in vivo applications. Acta Biomater. 2021, 120, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Shi, H.; Xue, Y.; Cheng, W.; Yu, M.; Ding, C.; Xu, F.; Yu, S. Releasing bacteria from functional magnetic beads is beneficial to MALDI-TOF MS based identification. Talanta 2021, 225, 121968. [Google Scholar] [CrossRef]
- Yang, R.; Zhu, L.; Gao, Y.; Li, B.; Fang, L.; Meng, S.; Song, C. Immunomagnetic separation for the enrichment of trace enrofloxacin and analysis of degradation byproducts in water. Water Reuse 2024, 14, 577–592. [Google Scholar] [CrossRef]
- Gheorghiu, M.; Olaru, A.; Tar, A.; Polonschii, C.; Gheorghiu, E. Sensing based on assessment of non-monotonous effect determined by target analyte: Case study on pore-forming compounds. Biosens. Bioelectron. 2009, 24, 3517–3523. [Google Scholar] [CrossRef] [PubMed]
- Olaru, A.; Gheorghiu, M.; David, S.; Wohland, T.; Gheorghiu, E. Assessment of the Multiphase Interaction between a Membrane Disrupting Peptide and a Lipid Membrane. J. Phys. Chem. B 2009, 113, 14369–14380. [Google Scholar] [CrossRef] [PubMed]
- Polonschii, C.; Gheorghiu, M.; David, S.; Gáspár, S.; Melinte, S.; Majeed, H.; Kandel, M.E.; Popescu, G.; Gheorghiu, E. High-resolution impedance mapping using electrically activated quantitative phase imaging. Light Sci. Appl. 2021, 10, 20. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.-Y.; Xu, S.-S.; Li, H.; Guo, X.-M.; Lin, J.-S.; Guan, B.; Chen, B.; Wang, T.; Zhang, Y.-J.; Li, J.-F. A high sensitivity prostate-specific antigen SERS detection platform based on laser resonance nanoparticles. Nanoscale 2025, 17, 5171–5180. [Google Scholar] [CrossRef]
- Shen, J.; Zhu, Y.; Yang, X.; Zong, J.; Li, C. Multifunctional Fe3O4@Ag/SiO2/Au Core–Shell Microspheres as a Novel SERS-Activity Label via Long-Range Plasmon Coupling. Langmuir 2012, 29, 690–695. [Google Scholar] [CrossRef]
- Wakiyama, S.; Watarai, H. SERS Measurement of Cysteamine Molecules Stretched by the Electromagnetophoretic Force. Anal. Sci. 2017, 33, 399–401. [Google Scholar] [CrossRef]
MP | Antibody | Target | Analysis Method | Limit of Detection | Ref. |
---|---|---|---|---|---|
Dynabeads Carboxylic Acid | S. cerevisiae-specific antibody | S. cerevisiae | Custom (magneto-phoretic assisted electrical impedance assay) | 105 cells/mL | [22] |
Multivariate Metal-Organic Frameworks | - aptamer | S. cerevisiae | Fluorescence detection | 10 cells/mL | [60] |
Dynabeads Carboxylic Acid | Anti-E. coli O157:H7, anti-Gram-positive, anti-Gram-negative | E. coli | Fluorescence detection | 102 CFU/mL | [17] |
Streptavidin Magnetic Beads | Anti-E. coli O157:H7 | E. coli | Fluorescence spectrophotometer | 0.35 CFU/mL | [56] |
Carboxyl Magnetic Beads | Anti-EtpA IgG | E. coli | Fluorescence detection | Not specified | [54] |
Coated with polydopamine | - | S. aureus, S. epidermidis, S. mutans, N. perflava, P. aeruginosa and 3 strains of E. coli | Optical density measurement | 10 CFU/mL | [61] |
Carboxyl Magnetic Beads | Anti-OmpF | Y. enterocolitica | PCR | 64 CFU/mL | [15] |
SiO2 Beads | Egg yolk antibody | S. aureus | Bioluminescence detector | 3 CFU/mL | [58] |
Fe3O4 Beads | EpCAM | CTCs | Microfluidic device | 1–100 cells/mL | [65] |
Fe3O4 Beads | Neutrophil membrane | CTCs | (immuno) fluorescence detection | Not specified | [66] |
Dynabeads Streptavidin | Anti-human CD45 (AF488-anti-CD45) and biotinylated anti-human EpCAM | CTCs | Optical density measurement | 5 cells/mL | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
David, S.; Tudor, D.A.; Ftodiev, A.I.; Bala, C.; Gheorghiu, M. A Concise Review of the Control and Assessment of Magnetic Affinity Particle Assembly for Live Cell Analyses: State of the Art and Challenges. Materials 2025, 18, 2264. https://doi.org/10.3390/ma18102264
David S, Tudor DA, Ftodiev AI, Bala C, Gheorghiu M. A Concise Review of the Control and Assessment of Magnetic Affinity Particle Assembly for Live Cell Analyses: State of the Art and Challenges. Materials. 2025; 18(10):2264. https://doi.org/10.3390/ma18102264
Chicago/Turabian StyleDavid, Sorin, Daniela A. Tudor, Andreea I. Ftodiev, Camelia Bala, and Mihaela Gheorghiu. 2025. "A Concise Review of the Control and Assessment of Magnetic Affinity Particle Assembly for Live Cell Analyses: State of the Art and Challenges" Materials 18, no. 10: 2264. https://doi.org/10.3390/ma18102264
APA StyleDavid, S., Tudor, D. A., Ftodiev, A. I., Bala, C., & Gheorghiu, M. (2025). A Concise Review of the Control and Assessment of Magnetic Affinity Particle Assembly for Live Cell Analyses: State of the Art and Challenges. Materials, 18(10), 2264. https://doi.org/10.3390/ma18102264