Optical Properties of GePb Alloy Realized by Ion Beam Technology
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- Ge Nanocrystals: As reported in Refs. [58,59], Ge nanocrystals exhibit a higher bandgap than single-crystal Ge, which is particle-size-dependent. Their PL emission is strongly broadened, extending toward shorter wavelengths, and can cover the visible range up to the Ge bandgap at room temperature. In contrast, the photoluminescence observed in our work predominantly extends toward longer wavelengths, which is inconsistent with this origin.
- Polycrystalline Ge: According to Ref. [56], the PL emission of polycrystalline Ge shifts slightly to shorter wavelengths compared to single-crystal Ge. While our GePb material contains polycrystalline Ge, no such blue-shifted PL spectra are observed in our results.
- Defects in Ge: To the best of our knowledge, the only reported defect-related luminescence in Ge is threading dislocation luminescence, which produces a sharp PL peak at 2.4 μm and does not shift with temperature (Refs. [56,60,61]). Since this emission lies outside our measurement range, it cannot explain our PL results. Furthermore, most defect-related PL in semiconductors arises from fixed energy levels, producing narrow emission lines (Refs. [62,63]), which is not consistent with our observations. The new emission peak observed in our FLA-treated GePb sample is distributed around 1800–2000 nm at 77 K and shifts with temperature. This behavior cannot be attributed to defect-related luminescence.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spitzer, W.G.; Trumbore, F.A.; Logan, R.A. Properties of Heavily Doped n-Type Germanium. J. Appl. Phys. 1961, 32, 1822–1830. [Google Scholar] [CrossRef]
- Camacho-Aguilera, R.E.; Cai, Y.; Patel, N.; Bessette, J.T.; Romagnoli, M.; Kimerling, L.C.; Michel, J. An Electrically Pumped Germanium Laser. Opt. Express 2012, 20, 11316. [Google Scholar] [CrossRef]
- Prucnal, S.; Berencén, Y.; Wang, M.; Rebohle, L.; Böttger, R.; Fischer, I.A.; Augel, L.; Oehme, M.; Schulze, J.; Voelskow, M.; et al. Ex Situ n+ Doping of GeSn Alloys via Non-Equilibrium Processing. Semicond. Sci. Technol. 2018, 33, 065008. [Google Scholar] [CrossRef]
- Prucnal, S.; Berencén, Y.; Wang, M.; Rebohle, L.; Kudrawiec, R.; Polak, M.; Zviagin, V.; Schmidt-Grund, R.; Grundmann, M.; Grenzer, J.; et al. Band Gap Renormalization in N-Type GeSn Alloys Made by Ion Implantation and Flash Lamp Annealing. J. Appl. Phys. 2019, 125, 203105. [Google Scholar] [CrossRef]
- Carraro, C.; Milazzo, R.; Sgarbossa, F.; Fontana, D.; Maggioni, G.; Raniero, W.; Scarpa, D.; Baldassarre, L.; Ortolani, M.; Andrighetto, A.; et al. N-Type Heavy Doping with Ultralow Resistivity in Ge by Sb Deposition and Pulsed Laser Melting. Appl. Surf. Sci. 2020, 509, 145229. [Google Scholar] [CrossRef]
- Sánchez-Pérez, J.R.; Boztug, C.; Chen, F.; Sudradjat, F.F.; Paskiewicz, D.M.; Jacobson, R.; Lagally, M.G.; Paiella, R. Direct-Bandgap Light-Emitting Germanium in Tensilely Strained Nanomembranes. Proc. Natl. Acad. Sci. USA 2011, 108, 18893–18898. [Google Scholar] [CrossRef]
- Jain, J.R.; Hryciw, A.; Baer, T.M.; Miller, D.A.B.; Brongersma, M.L.; Howe, R.T. A Micromachining-Based Technology for Enhancing Germanium Light Emission via Tensile Strain. Nat. Photon 2012, 6, 398–405. [Google Scholar] [CrossRef]
- Atalla, M.R.M.; Assali, S.; Koelling, S.; Attiaoui, A.; Moutanabbir, O. High-Bandwidth Extended-SWIR GeSn Photodetectors on Silicon Achieving Ultrafast Broadband Spectroscopic Response. ACS Photonics 2022, 9, 1425–1433. [Google Scholar] [CrossRef]
- Talamas Simola, E.; Kiyek, V.; Ballabio, A.; Schlykow, V.; Frigerio, J.; Zucchetti, C.; De Iacovo, A.; Colace, L.; Yamamoto, Y.; Capellini, G.; et al. CMOS-Compatible Bias-Tunable Dual-Band Detector Based on GeSn/Ge/Si Coupled Photodiodes. ACS Photonics 2021, 8, 2166–2173. [Google Scholar] [CrossRef]
- Prucnal, S.; Berencén, Y.; Wang, M.; Grenzer, J.; Voelskow, M.; Hübner, R.; Yamamoto, Y.; Scheit, A.; Bärwolf, F.; Zviagin, V.; et al. Strain and Band-Gap Engineering in Ge–Sn Alloys via P Doping. Phys. Rev. Appl. 2018, 10, 064055. [Google Scholar] [CrossRef]
- Casiez, L.; Cardoux, C.; Acosta Alba, P.; Bernier, N.; Richy, J.; Pauc, N.; Calvo, V.; Coudurier, N.; Rodriguez, P.; Concepción, O.; et al. Ex-Situ n-Type Doped Carrier-Injection Layers in Direct Bandgap GeSn LEDs. Mater. Sci. Semicond. Process. 2024, 182, 108654. [Google Scholar] [CrossRef]
- Di Russo, E.; Sgarbossa, F.; Ranieri, P.; Maggioni, G.; Ndiaye, S.; Duguay, S.; Vurpillot, F.; Rigutti, L.; Rouvière, J.-L.; Morandi, V.; et al. Synthesis of Relaxed Ge0.9Sn0.1/Ge by Nanosecond Pulsed Laser Melting. Appl. Surf. Sci. 2023, 612, 155817. [Google Scholar] [CrossRef]
- Fontana, D.; Sgarbossa, F.; Milazzo, R.; Di Russo, E.; Galluccio, E.; De Salvador, D.; Duffy, R.; Napolitani, E. Ex-Situ n-Type Heavy Doping of Ge1-xSnx Epilayers by Surface Sb Deposition and Pulsed Laser Melting. Appl. Surf. Sci. 2022, 600, 154112. [Google Scholar] [CrossRef]
- Li, M.; Zheng, J.; Liu, X.; Zhu, Y.; Niu, C.; Pang, Y.; Liu, Z.; Zuo, Y.; Cheng, B. Sn Composition Graded GeSn Photodetectors on Si Substrate with Cutoff Wavelength of 3.3 μm for Mid-Infrared Si Photonics. Appl. Phys. Lett. 2022, 120, 121103. [Google Scholar] [CrossRef]
- Wirths, S.; Geiger, R.; Von Den Driesch, N.; Mussler, G.; Stoica, T.; Mantl, S.; Ikonic, Z.; Luysberg, M.; Chiussi, S.; Hartmann, J.M.; et al. Lasing in Direct-Bandgap GeSn Alloy Grown on Si. Nat. Photon 2015, 9, 88–92. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, J.; Niu, C.; Liu, T.; Huang, Q.; Li, M.; Zhang, D.; Pang, Y.; Liu, Z.; Zuo, Y.; et al. Sn Content Gradient GeSn with Strain Controlled for High Performance GeSn Mid-Infrared Photodetectors. Photon. Res. 2022, 10, 1567. [Google Scholar] [CrossRef]
- Li, M.; Zheng, J.; Liu, X.; Niu, C.; Zhu, Y.; Pang, Y.; Liu, Z.; Yang, Y.; Zuo, Y.; Cheng, B. GeSn Resonance Cavity Enhanced Photodetector with Gold Bottom Reflector for the L Band Optical Communication. Opt. Lett. 2022, 47, 4315. [Google Scholar] [CrossRef]
- Tsai, C.-H.; Lin, K.-C.; Cheng, C.-Y.; Lee, K.-C.; Cheng, H.H.; Chang, G.-E. GeSn Lateral P-i-n Waveguide Photodetectors for Mid-Infrared Integrated Photonics. Opt. Lett. 2021, 46, 864. [Google Scholar] [CrossRef]
- Wen, S.; Shaikh, M.S.; Steuer, O.; Prucnal, S.; Grenzer, J.; Hübner, R.; Turek, M.; Pyszniak, K.; Reiter, S.; Fischer, I.A.; et al. Room-Temperature Extended Short-Wave Infrared GeSn Photodetectors Realized by Ion Beam Techniques. Appl. Phys. Lett. 2023, 123, 081109. [Google Scholar] [CrossRef]
- Huang, B.-J.; Chang, C.-Y.; Hsieh, Y.-D.; Soref, R.A.; Sun, G.; Cheng, H.-H.; Chang, G.-E. Electrically Injected GeSn Vertical-Cavity Surface Emitters on Silicon-on-Insulator Platforms. ACS Photonics 2019, 6, 1931–1938. [Google Scholar] [CrossRef]
- Wu, S.; Wang, Z.; Zhang, L.; Chen, Q.; Wen, S.; Lee, K.H.; Bao, S.; Fan, W.; Seng, T.C.; Luo, J.-W. Enhanced Light Emission of Germanium Light-Emitting-Diode on 150 Mm Germanium-on-Insulator (GOI). Opt. Express 2023, 31, 17921. [Google Scholar] [CrossRef] [PubMed]
- Slater, J.C. Atomic Radii in Crystals. J. Chem. Phys. 1964, 41, 3199–3204. [Google Scholar] [CrossRef]
- Suresh, C.H.; Koga, N. A Consistent Approach toward Atomic Radii. J. Phys. Chem. A 2001, 105, 5940–5944. [Google Scholar] [CrossRef]
- Huang, W.; Cheng, B.; Xue, C.; Li, C. Comparative Studies of Clustering Effect, Electronic and Optical Properties for GePb and GeSn Alloys with Low Pb and Sn Concentration. Phys. B Condens. Matter 2014, 443, 43–48. [Google Scholar] [CrossRef]
- Broderick, C.A.; O’Halloran, E.J.; Kirwan, A.C.; Dunne, M.D.; Tanner, D.S.P.; Schulz, S.; O’Reilly, E.P. Multi-Scale Electronic Structure Analysis of Direct-Gap Group-IV Alloys: Implications for Device Applications. In Proceedings of the 2019 IEEE 16th International Conference on Group IV Photonics (GFP), Singapore, 28–30 August 2019; IEEE: Singapore, 2019; pp. 1–2. [Google Scholar]
- Huang, W.; Cheng, B.; Xue, C.; Yang, H. The Band Structure and Optical Gain of a New IV-Group Alloy GePb: A First-Principles Calculation. J. Alloys Compd. 2017, 701, 816–821. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, J.; Zhao, Y.; Li, M.; Peng, L.; Wan, F.; Niu, C.; Liu, Z.; Zuo, Y.; Xue, C.; et al. Germanium Lead Alloy on Insulator Grown by Rapid Melting Growth. J. Alloys Compd. 2021, 864, 158798. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, J.; Li, X.; Niu, C.; Peng, L.; Wan, F.; Liu, Z.; Zuo, Y.; Xue, C.; Cheng, B. Investigation of Lead Surface Segregation during Germanium–Lead Epitaxial Growth. J. Mater. Sci. 2020, 55, 4762–4768. [Google Scholar] [CrossRef]
- Zhou, Q.; Chan, T.K.; Lim, S.L.; Zhan, C.; Osipowicz, T.; Gong, X.; Tok, E.S.; Yeo, Y.-C. Single Crystalline Germanium-Lead Alloy on Germanium Substrate Formed by Pulsed Laser Epitaxy. ECS Solid State Lett. 2014, 3, P91–P93. [Google Scholar] [CrossRef]
- Harding, R.E.; Davies, G.; Hayama, S.; Coleman, P.G.; Burrows, C.P.; Wong-Leung, J. Photoluminescence Response of Ion-Implanted Silicon. Appl. Phys. Lett. 2006, 89, 181917. [Google Scholar] [CrossRef]
- Harding, R.; Davies, G.; Coleman, P.G.; Burrows, C.P.; Wong-Leung, J. Study of Defects in Ion-Implanted Silicon Using Photoluminescence and Positron Annihilation. Phys. B Condens. Matter 2003, 340–342, 738–742. [Google Scholar] [CrossRef]
- Tran, T.T.; Hudspeth, Q.; Liu, Y.; Smillie, L.A.; Wang, B.; Bruce, R.A.; Mathews, J.; Warrender, J.M.; Williams, J.S. Ion Beam Synthesis and Photoluminescence Study of Supersaturated Fully-Relaxed Ge-Sn Alloys. Mater. Sci. Eng. B 2020, 262, 114702. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM–The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Ottaviano, L.; Verna, A.; Grossi, V.; Parisse, P.; Piperno, S.; Passacantando, M.; Impellizzeri, G.; Priolo, F. Surface Morphology of Mn+ Implanted Ge(100): A Systematic Investigation as a Function of the Implantation Substrate Temperature. Surf. Sci. 2007, 601, 2623–2627. [Google Scholar] [CrossRef]
- Stepanov, A.L.; Nuzhdin, V.I.; Valeev, V.F.; Konovalov, D.A.; Rogov, A.M. Modification of the Surface of Germanium and the Formation of a Porous Layer During Implantation with Indium Ions. Nano Biotechnol. Rep. 2023, 18, S144–S150. [Google Scholar] [CrossRef]
- Janssens, T.; Huyghebaert, C.; Vanhaeren, D.; Winderickx, G.; Satta, A.; Meuris, M.; Vandervorst, W. Heavy Ion Implantation in Ge: Dramatic Radiation Induced Morphology in Ge. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2006, 24, 510–514. [Google Scholar] [CrossRef]
- Romano, L.; Impellizzeri, G.; Bosco, L.; Ruffino, F.; Miritello, M.; Grimaldi, M.G. Nanoporosity Induced by Ion Implantation in Deposited Amorphous Ge Thin Films. J. Appl. Phys. 2012, 111, 113515. [Google Scholar] [CrossRef]
- Darby, B.L.; Yates, B.R.; Rudawski, N.G.; Jones, K.S.; Kontos, A.; Elliman, R.G. Insights for Void Formation in Ion-Implanted Ge. Thin Solid Film. 2011, 519, 5962–5965. [Google Scholar] [CrossRef]
- Rogov, A.M.; Nuzhdin, V.I.; Valeev, V.F.; Stepanov, A.L. Formation of Porous Germanium Layers with Various Surface Morphology in Dependence on Mass of Implanted Ions. Compos. Commun. 2020, 19, 6–10. [Google Scholar] [CrossRef]
- Romano, L.; Impellizzeri, G.; Tomasello, M.V.; Giannazzo, F.; Spinella, C.; Grimaldi, M.G. Nanostructuring in Ge by Self-Ion Implantation. J. Appl. Phys. 2010, 107, 084314. [Google Scholar] [CrossRef]
- Rudawski, N.G.; Jones, K.S. Nanostructured Germanium Prepared via Ion Beam Modification. J. Mater. Res. 2013, 28, 1633–1645. [Google Scholar] [CrossRef]
- Mollick, S.A.; Kumar, M.; Singh, R.; Satpati, B.; Ghose, D.; Som, T. Gold-decorated highly ordered self-organized grating-like nanostructures on Ge surface: Kelvin probe force microscopy and conductive atomic force microscopy studies. Nanotechnology 2016, 27, 435302. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Prucnal, S.; Huebner, R.; Baehtz, C.; Skorupa, I.; Wang, Y.; Skorupa, W.; Helm, M.; Zhou, S. Ge1−xSnx Alloys Synthesized by Ion Implantation and Pulsed Laser Melting. Appl. Phys. Lett. 2014, 105, 042107. [Google Scholar] [CrossRef]
- Tran, T.T.; Alkhaldi, H.S.; Gandhi, H.H.; Pastor, D.; Huston, L.Q.; Wong-Leung, J.; Aziz, M.J.; Williams, J.S. Suppression of Ion-Implantation Induced Porosity in Germanium by a Silicon Dioxide Capping Layer. Appl. Phys. Lett. 2016, 109, 082106. [Google Scholar] [CrossRef]
- Tran, T.T.; Pastor, D.; Gandhi, H.H.; Smillie, L.A.; Akey, A.J.; Aziz, M.J.; Williams, J.S. Synthesis of Ge1−xSnx Alloys by Ion Implantation and Pulsed Laser Melting: Towards a Group IV Direct Bandgap Material. J. Appl. Phys. 2016, 119, 183102. [Google Scholar] [CrossRef]
- Prucnal, S.; Liu, F.; Voelskow, M.; Vines, L.; Rebohle, L.; Lang, D.; Berencén, Y.; Andric, S.; Boettger, R.; Helm, M.; et al. Ultra-Doped n-Type Germanium Thin Films for Sensing in the Mid-Infrared. Sci. Rep. 2016, 6, 27643. [Google Scholar] [CrossRef]
- Leem, J.W.; Song, Y.M.; Yu, J.S. Broadband Antireflective Germanium Surfaces Based on Subwavelength Structures for Photovoltaic Cell Applications. Opt. Express 2011, 19, 26308. [Google Scholar] [CrossRef]
- Iyengar, V.V.; Nayak, B.K.; Gupta, M.C. Optical Properties of Silicon Light Trapping Structures for Photovoltaics. Sol. Energy Mater. Sol. Cells 2010, 94, 2251–2257. [Google Scholar] [CrossRef]
- Battaglia, C.; Hsu, C.-M.; Söderström, K.; Escarré, J.; Haug, F.-J.; Charrière, M.; Boccard, M.; Despeisse, M.; Alexander, D.T.L.; Cantoni, M.; et al. Light Trapping in Solar Cells: Can Periodic Beat Random? ACS Nano 2012, 6, 2790–2797. [Google Scholar] [CrossRef]
- Han, K.; Chang, C.-H. Numerical Modeling of Sub-Wavelength Anti-Reflective Structures for Solar Module Applications. Nanomaterials 2014, 4, 87–128. [Google Scholar] [CrossRef]
- Choi, H.-J.; Huh, D.; Jun, J.; Lee, H. A Review on the Fabrication and Applications of Sub-Wavelength Anti-Reflective Surfaces Based on Biomimetics. Appl. Spectrosc. Rev. 2019, 54, 719–735. [Google Scholar] [CrossRef]
- Gonzalez, F.L.; Gordon, M.J. Bio-Inspired, Sub-Wavelength Surface Structures for Ultra-Broadband, Omni-Directional Anti-Reflection in the Mid and Far IR. Opt. Express 2014, 22, 12808. [Google Scholar] [CrossRef] [PubMed]
- Ting, C.-J.; Chen, C.-F.; Chou, C.P. Antireflection Subwavelength Structures Analyzed by Using the Finite Difference Time Domain Method. Optik 2009, 120, 814–817. [Google Scholar] [CrossRef]
- An, S.; Liao, Y.; Shin, S.; Kim, M. Black Germanium Photodetector Exceeds External Quantum Efficiency of 160%. Adv. Mater. Technol. 2022, 7, 2100912. [Google Scholar] [CrossRef]
- Zanatta, A.R. Revisiting the Optical Bandgap of Semiconductors and the Proposal of a Unified Methodology to Its Determination. Sci. Rep. 2019, 9, 11225. [Google Scholar] [CrossRef]
- Kittler, M.; Arguirov, T.; Oehme, M.; Yamamoto, Y.; Tillack, B.; Abrosimov, N.V. Photoluminescence Study of Ge Containing Crystal Defects. Phys. Status Solidi (a) 2011, 208, 754–759. [Google Scholar] [CrossRef]
- Lieten, R.R.; Bustillo, K.; Smets, T.; Simoen, E.; Ager, J.W.; Haller, E.E.; Locquet, J.-P. Photoluminescence of Bulk Germanium. Phys. Rev. B 2012, 86, 035204. [Google Scholar] [CrossRef]
- Nataraj, L.; Xu, F.; Cloutier, S.G. Direct-Bandgap Luminescence at Room-Temperature from Highly-Strained Germanium Nanocrystals. Opt. Express 2010, 18, 7085. [Google Scholar] [CrossRef]
- Carolan, D. Recent Advances in Germanium Nanocrystals: Synthesis, Optical Properties and Applications. Prog. Mater. Sci. 2017, 90, 128–158. [Google Scholar] [CrossRef]
- Steinmann, E.A. Dislocation Luminescence of Germanium. Cryst. Res. Technol. 1981, 16, 247–250. [Google Scholar] [CrossRef]
- Shevchenko, S.A.; Tereshchenko, A.N. Photoluminescence in Germanium with a Quasi-Equilibrium Dislocation Structure. Phys. Solid State 2007, 49, 28–33. [Google Scholar] [CrossRef]
- Street, R.A.; Johnson, N.M.; Gibbons, J.F. Defect Luminescence in Cw Laser-Annealed Silicon. J. Appl. Phys. 1979, 50, 8201–8203. [Google Scholar] [CrossRef]
- Reshchikov, M.A.; Morkoç, H. Luminescence Properties of Defects in GaN. J. Appl. Phys. 2005, 97, 061301. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, S.; Zhu, Y.-H.; Steuer, O.; Shaikh, M.S.; Prucnal, S.; Hübner, R.; Worbs, A.; He, L.; Helm, M.; Zhou, S.; et al. Optical Properties of GePb Alloy Realized by Ion Beam Technology. Materials 2025, 18, 2258. https://doi.org/10.3390/ma18102258
Wen S, Zhu Y-H, Steuer O, Shaikh MS, Prucnal S, Hübner R, Worbs A, He L, Helm M, Zhou S, et al. Optical Properties of GePb Alloy Realized by Ion Beam Technology. Materials. 2025; 18(10):2258. https://doi.org/10.3390/ma18102258
Chicago/Turabian StyleWen, Shuyu, Yuan-Hao Zhu, Oliver Steuer, Mohd Saif Shaikh, Slawomir Prucnal, René Hübner, Andreas Worbs, Li He, Manfred Helm, Shengqiang Zhou, and et al. 2025. "Optical Properties of GePb Alloy Realized by Ion Beam Technology" Materials 18, no. 10: 2258. https://doi.org/10.3390/ma18102258
APA StyleWen, S., Zhu, Y.-H., Steuer, O., Shaikh, M. S., Prucnal, S., Hübner, R., Worbs, A., He, L., Helm, M., Zhou, S., Luo, J.-W., & Berencén, Y. (2025). Optical Properties of GePb Alloy Realized by Ion Beam Technology. Materials, 18(10), 2258. https://doi.org/10.3390/ma18102258