Fabrication of Cu2Sn1-xGexS3 Thin-Film Solar Cells via Sulfurization of Cu2GeS3/Cu2SnS3 Stacked Precursors
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aihara, N.; Araki, H.; Takeuchi, A.; Jimbo, K.; Katagiri, H. Fabrication of Cu2SnS3 thin films by sulfurization of evaporated Cu-Sn precursors for solar cells. Phys. Status Solidi C 2013, 10, 1086–1092. [Google Scholar] [CrossRef]
- De Chalbaud, L.M.; de Delgado, G.D.; Delgado, J.M. Synthesis and single-crystal structural study of Cu2GeS3. Mater. Res. Bull. 1997, 32, 1371–1376. [Google Scholar] [CrossRef]
- Chen, Q.; Maeda, T.; Wada, T. Optical properties and electronic structures of Cu2SnS3, Cu2GeS3, and their solid solution Cu2(Ge,Sn)S3. Jpn. J. Appl. Phys. 2018, 57, 08RC20. [Google Scholar] [CrossRef]
- Araki, H.; Yamano, M.; Nishida, G.; Takeuchi, A.; Aihara, N.; Tanaka, K. Synthesis and characterization of Cu2Sn1-xGexS3. Phys. Status Solidi C 2017, 10, 1600199. [Google Scholar] [CrossRef]
- Fujita, R.; Saito, N.; Kosugi, K.; Tanaka, K. Preparation of Cu2Sn1-xGexS3 bulk single crystals by chemical vapor transport with iodine. J. Cryst. Growth 2018, 498, 258–262. [Google Scholar] [CrossRef]
- Aihara, N.; Tanaka, K. Photoluminescence characterization of Cu2Sn1-xGexS3 bulk single crystals. AIP Adv. 2018, 8, 095323. [Google Scholar] [CrossRef]
- Peng, X.; Zhang, S.; Xiang, Y. Solvothermal synthesis of Cu2Zn(Sn1-xGex)S4 and Cu2(Sn1-xGex)S3 nanoparticles with tunable band gap energies. J. Alloys Comp. 2015, 640, 75–81. [Google Scholar] [CrossRef]
- Ghorpade, U.V.; Suryawanshi, M.P.; Shin, S.W.; Kim, I.; Ahn, S.K.; Yun, J.H.; Jeong, C.; Kolekar, S.S.; Kim, J.H. Colloidal wurtzite Cu2SnS3 (CTS) nanocrystals and their applications in solar cells. Chem. Mater. 2016, 28, 3308–3317. [Google Scholar] [CrossRef]
- Liu, H.; Xiang, L.; Gao, P.; Wang, D.; Yang, J.; Chen, X.; Li, S.; Shi, Y.; Gao, F.; Zhang, Y. Improvement strategies for stability and efficiency of perovskite solar cells. Nanomaterials 2022, 12, 3295. [Google Scholar] [CrossRef]
- Wang, S.; Li, M.-H.; Jiang, Y.; Hu, J.-S. Instability of solution-processed perovskite films: Origin and mitigation strategies. Mater. Futures 2023, 2, 012102. [Google Scholar] [CrossRef]
- Chantana, J.; Tai, K.; Hayashi, H.; Nishimura, T.; Kawano, Y.; Minemoto, T. Investigation of carrier recombination of Na-doped Cu2SnS3 solar cell for its improved conversion efficiency of 5.1%. Sol. Energy Mater Sol. Cells 2020, 206, 110261. [Google Scholar] [CrossRef]
- Kanai, A.; Sugiyama, M. Na induction effects for J–V properties of Cu2SnS3 (CTS) solar cells and fabrication of a CTS solar cell over-5.2% efficiency. Sol. Energy Mater Sol. Cells 2021, 231, 111315. [Google Scholar] [CrossRef]
- Htay, M.T.; Mandokoro, T.; Seki, H.; Sakaizawa, T.; Momose, N.; Taishi, T.; Hashimoto, Y.; Ito, K. Influence of Ge composition in the Cu2Sn1-xGexS3 thin-film photovoltaic absorber prepared by sulfurization of laminated metallic precursor. Sol. Energy Mater. Sol. Cells 2015, 140, 312–319. [Google Scholar] [CrossRef]
- Hayashi, H.; Chantana, J.; Kawano, Y.; Nishimura, T.; Minemoto, T. Influence of Ge/(Ge+Sn) composition ratio in Cu2Sn1-xGexS3 thin-film solar cells on their physical properties and photovoltaic performances. Sol. Energy Mater Sol. Cells 2020, 208, 110382. [Google Scholar] [CrossRef]
- Umehara, M.; Takeda, Y.; Motohiro, T.; Sakai, T.; Awano, H.; Maekawa, R. Cu2Sn1-xGexS3(x = 0.17) Thin-film solar cells with high conversion efficiency of 6.0%. Appl. Phys. Express 2013, 6, 045501. [Google Scholar] [CrossRef]
- Umehara, M.; Tajima, S.; Aoki, Y.; Takeda, Y.; Motohiro, T. Cu2Sn1−xGexS3 solar cells fabricated with a graded bandgap structure. Appl. Phys. Express 2016, 9, 072301. [Google Scholar] [CrossRef]
- He, M.; Kim, J.; Suryawanshi, M.P.; Lokhande, A.C.; Gang, M.; Ghorpade, U.V.; Lee, D.S.; Kim, J.H. Influence of sulfurization temperature on photovoltaic properties of Ge alloyed Cu2SnS3 (CTGS) thin film solar cells. Sol. Energy Mater. Sol. Cells 2018, 174, 94–101. [Google Scholar] [CrossRef]
- Malaquias, J.C.; Wu, M.; Lin, J.; Robert, E.V.C.; Sniekers, J.; Binnemans, K.; Dale, P.J.; Fransaer, J. Electrodeposition of germanium-containing precursors for Cu2(Sn,Ge)S3 thin film solar cells. Electrochim. Acta 2017, 251, 651–659. [Google Scholar] [CrossRef]
- Araki, H.; Chino, K.; Kimura, K.; Aihara, N.; Jimbo, K.; Katagiri, H. Fabrication of Cu2GeS3-based thin film solar cells by sulfurization of Cu/Ge stacked precursors. Jpn. J. Appl. Phys. 2014, 53, 05FW10. [Google Scholar] [CrossRef]
- Jin, X.; Zhang, L.; Jiang, G.; Liu, W.; Zhu, C. High open-circuit voltage of ternary Cu2GeS3 thin film solar cells from combustion synthesized Cu-Ge alloy. Sol. Energy Mater. Sol. Cells 2017, 160, 319–327. [Google Scholar] [CrossRef]
- Kanai, A.; Araki, H.; Takeuchi, A.; Katagiri, H. Annealing temperature dependence of photovoltaic properties of solar cells containing Cu2SnS3 thin films produced by co-evaporation. Phys. Status Solidi B 2015, 252, 1239–1243. [Google Scholar] [CrossRef]
- Kanai, A.; Toyonaga, K.; Chino, K.; Katagiri, H.; Hideaki, A. Fabrication of Cu2SnS3 thin-film solar cells with power conversion efficiency of over 4%. Jpn. J. Appl. Phys. 2015, 54, 08KC06. [Google Scholar] [CrossRef]
- Sasagawa, S.; Nishida, G.; Takeuchi, A.; Katagiri, H.; Hideaki, A. Effect of sodium addition on Cu2SnS3 thin-film solar cells fabricated on alkali-free glass substrates. Jpn. J. Appl. Phys. 2018, 57, 08RC11. [Google Scholar] [CrossRef]
- Sasagawa, S.; Yago, A.; Kanai, A.; Araki, H. Cu2(Sn1-xGex)S3 solar cells prepared via co-evaporation and annealing in germanium sulfide and sulfur vapor. Phys. Status Solidi C 2017, 14, 1600193. [Google Scholar] [CrossRef]
- Kanai, A.; Araki, H.; Ohashi, R.; Sugiyama, M. Sulfurization of Cu2(Sn,Ge)S3 thin films deposited by co-evaporation. Jpn. J. Appl. Phys. 2020, 59, SCCD01. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Siefer, G.; Hao, X. Solar cell efficiency tables (Version 63). Prog. Photovolt. 2024, 32, 3–13. [Google Scholar] [CrossRef]
- Scarpulla, M.A.; McCandless, B.; Phillips, A.B.; Yan, Y.; Heben, M.J.; Wolden, C.; Xiong, G.; Metzger, W.K.; Mao, D.; Krasikov, D.; et al. CdTe-based thin film photovoltaics: Recent advances, current challenges and future prospects. Sol. Energy Mater. Sol. Cells 2023, 255, 112289. [Google Scholar] [CrossRef]
- Huang, C.-H.; Chuang, W.-J.; Lin, C.-P.; Jan, Y.-L.; Shih, Y.-C. Deposition technologies of high-efficiency CIGS solar cells: Development of two-step and co-evaporation processes. Crystals 2018, 8, 296. [Google Scholar] [CrossRef]
- Hamamura, K.; Chantana, J.; Suzuki, K.; Minemoto, T. Influence of Cu/(Ge + Sn) composition ratio on photovoltaic performances of Cu2Sn1-xGexS3 solar cell. Sol. Energy 2017, 149, 341–346. [Google Scholar] [CrossRef]
- Nikolaev, R.E.; Vasilyeva, I.G. A new way of phase identification, of AgGaGeS4∙nGeS2 crystals. J. Solid State Chem. 2013, 203, 340. [Google Scholar] [CrossRef]
- Piacente, V.; Foglia, S.; Scardala, P. Sublimation study of the tin sulphides SnS2, Sn2S3 and SnS. J. Alloys Comp. 1991, 177, 17–30. [Google Scholar] [CrossRef]
- Ye, Q.; Xu, D.; Cai, B.; Lu, J.; Yi, H.; Ma, C.; Zheng, Z.; Yao, J.; Ouyang, G.; Yang, G. High-performance hierarchical O-SnS/I-ZnIn2S4 photodetectors by leveraging the synergy of optical regulation and band tailoring. Mater. Horiz. 2022, 9, 2364–2375. [Google Scholar] [CrossRef] [PubMed]
- Pyeon, J.J.; Baek, I.-H.; Song, Y.G.; Kim, G.S.; Cho, A.-J.; Lee, G.-Y.; Han, J.H.; Chung, T.-M.; Hwang, C.S.; Kang, C.-Y.; et al. Highly sensitive flexible NO2 sensor composed of vertically aligned 2D SnS2 operating at room temperature. J. Mater. Chem. C 2020, 8, 11874–11881. [Google Scholar] [CrossRef]
- Suzuki, K.; Chantana, J.; Minemoto, T. Na role during sulfurization of NaF/Cu/SnS2 stacked precursor for formation of Cu2SnS3 thin film as absorber of solar cell. Appl. Surf. Sci. 2017, 414, 140–146. [Google Scholar] [CrossRef]
Precursor | Method | [Ge]/([Ge] + [Sn]) | PCE [%] | Ref. |
---|---|---|---|---|
Soda lime glass (SLG)/Mo/Cu-SnS2/NaF | Sputtering and annealing with S and SnS | 0 | 5.1 | [11] |
SLG/Mo/Cu/SnS2/NaF | Sputtering and annealing with S | 0 | 5.2 | [12] |
SLG/Mo/Ge, Sn, and Cu laminated layers | Sputtering and annealing with S in a closed tube | 0–1.0 | ~2 | [13] |
SLG/Mo/Ge/Cu–SnS2 | Sputtering and annealing with S and SnS2 | 0–0.58 | 5.6 | [14] |
SLG/Mo/Cu–Sn | Co-sputtering and annealing with S and GeS2 | 0, 0.17 | 6.0 | [15] |
SLG/Mo/Cu–Sn | Co-sputtering and annealing with S and GeS2 | Graded band gap structure | 6.7 | [16] |
SLG/Mo/Sn/Ge/Cu | Sputtering and annealing with S | 0.061–0.110 | 2.14 | [17] |
SLG/Mo/Cu(Sn,Ge) | Electrodeposition and annealing with S and GeS | 0.83 | 0.7 | [18] |
SLG/Mo/Cu/Ge | Evaporation and annealing with S | 1.0 | 1.70 | [19] |
SLG/Mo/Cu–Ge | Annealing of Cu-Ge alloy prepared by combustion method with S | 1.0 | 2.67 | [20] |
tCGS [h] | [Cu]/([Ge] + [Sn]) | [Ge]/([Ge] + [Sn]) x | [S]/([Cu] + [Ge] + [Sn]) | |
---|---|---|---|---|
CGS/CTS precursor | 0.0 | 1.58 | 0.00 | 1.07 |
1.0 | 1.67 | 0.33 | 1.00 | |
1.5 | 1.68 | 0.45 | 0.98 | |
Na-doped CTGS | 0.0 | 1.60 | 0.00 | 1.15 |
1.0 | 1.91 | 0.27 | 1.26 | |
1.5 | 1.94 | 0.41 | 1.16 | |
Na-free CTGS | 0.0 | Peeled off | Peeled off | Peeled off |
1.0 | 1.80 | 0.32 | 1.07 | |
1.5 | 1.81 | 0.44 | 1.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tasaki, T.; Jimbo, K.; Motai, D.; Takahashi, M.; Araki, H. Fabrication of Cu2Sn1-xGexS3 Thin-Film Solar Cells via Sulfurization of Cu2GeS3/Cu2SnS3 Stacked Precursors. Materials 2024, 17, 1886. https://doi.org/10.3390/ma17081886
Tasaki T, Jimbo K, Motai D, Takahashi M, Araki H. Fabrication of Cu2Sn1-xGexS3 Thin-Film Solar Cells via Sulfurization of Cu2GeS3/Cu2SnS3 Stacked Precursors. Materials. 2024; 17(8):1886. https://doi.org/10.3390/ma17081886
Chicago/Turabian StyleTasaki, Takeshi, Kazuo Jimbo, Daiki Motai, Masaya Takahashi, and Hideaki Araki. 2024. "Fabrication of Cu2Sn1-xGexS3 Thin-Film Solar Cells via Sulfurization of Cu2GeS3/Cu2SnS3 Stacked Precursors" Materials 17, no. 8: 1886. https://doi.org/10.3390/ma17081886
APA StyleTasaki, T., Jimbo, K., Motai, D., Takahashi, M., & Araki, H. (2024). Fabrication of Cu2Sn1-xGexS3 Thin-Film Solar Cells via Sulfurization of Cu2GeS3/Cu2SnS3 Stacked Precursors. Materials, 17(8), 1886. https://doi.org/10.3390/ma17081886