Synthesis of Orthorhombic Tin Dioxide Nanowires in Track Templates
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. SEM and XRD Analysis of Deposited Samples
3.2. The Photoluminescence (PL) End Electrical Properties of Orthorhombic SnO2-NWs/SiO2/Si
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lorenz, M.; Ramachandra Rao, M.S.; Venkatesan, T.; Fortunato, E.; Barquinha, P.; Branquinho, R. Topical Review: The oxide electronic materials and oxide interfaces roadmap. J. Phys. D Appl. Phys. 2016, 49, 433001. [Google Scholar] [CrossRef]
- Varghese, B.; Hoong, T.C.; Yanwu, Z.; Reddy, M.V.; Chowdari, B.V.R.; Wee, A.T.S.; Vincent, T.B.C.; Lim, C.T.; Sow, C.H. Co3O4 nanostructures with different morphologies and their field-emission properties. Adv. Funct. Mater. 2007, 17, 1932–1939. [Google Scholar] [CrossRef]
- Fang, X.S.; Yan, J.; Hu, L.F.; Liu, H.; Lee, P.S. Thin SnO2 nanowires with uniform diameter as excellent field emitters: A stability of more than 2400 minutes. Adv. Funct. Mater. 2012, 22, 1613–1622. [Google Scholar] [CrossRef]
- Bie, Y.Q.; Liao, Z.M.; Zhang, H.Z.; Li, G.R.; Ye, Y.; Zhou, Y.B.; Xu, J.; Qin, Z.X.; Dai, L.; Yu, D.P. Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions. Adv. Funct. Mater. 2011, 23, 649–653. [Google Scholar] [CrossRef] [PubMed]
- Rigutti, L.; Tchernycheva, M.; Bugallo, A.D.; Jacopin, G.; Julien, F.H.; Zagonel, L.F.; March, K.; Stephan, O.; Kociak, M.; Songmuang, R. Ultraviolet photodetector based on GaN/AlN quantum discs in a single nanowire. Nano Lett. 2010, 10, 2939–2943. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.S.; Wang, C.Y.; Xiu, F.X.; Lang, M.R.; Chu, L.W.; Tsai, C.J.; Chueh, Y.L.; Chen, L.J.; Wang, K.L. Oxide-confined formation of germanium nanowire heterostructures for high-performance transistors. Am. Chem. Soc. Nano 2011, 5, 6008–6015. [Google Scholar] [CrossRef] [PubMed]
- Kulmala, T.S.; Colli, A.; Fasoli, A.; Lombardo, A.; Haque, S.; Ferrari, A.C. Self-Aligned coupled nanowire. Am. Chem. Soc. Nano 2011, 5, 6910–6915. [Google Scholar] [CrossRef]
- Vaseashta, A.; Dimova-Malinovska, D. Nanostructured and nanoscale devices, sensors and detectors. Sci. Technol. Adv. Mater. 2005, 6, 312–318. [Google Scholar] [CrossRef]
- Chou, J.C.; Wang, Y.F. Preparation and study on the drift and hysteresis properties of the tin oxide gate ISFET by the sol-gel method. Sens. Actuators B Chem. 2002, 86, 58–62. [Google Scholar] [CrossRef]
- Lee, J.S.; Sim, S.K.; Min, B.; Cho, K.; Kim, S.W.; Kim, S. Structural and optoelectronic properties of SnO2 nanowires synthesized from ball-milled SnO2 powders. J. Cryst. Growth 2004, 267, 145–149. [Google Scholar] [CrossRef]
- Ying, Z.; Wan, Q.; Song, Z.T.; Feng, S.L. Controlled synthesis of branched SnO2 nanowhiskers. Mater. Lett. 2005, 59, 1670–1672. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, J.; Lu, H. Hierarchical structure SnO2 supported Pt nanoparticles as enhanced electrocatalyst for methanol oxidation. Electrochim. Acta 2012, 76, 475–479. [Google Scholar] [CrossRef]
- Heiss, M.; Fontana, Y.; Gustafsson, A.; Wust, G.; Magen, C.; O’Regan, D.; Luo, J.; Ketterer, B.; Conesa-Boj, S.; Kuhlmann, A.; et al. Self-assembled quantum dots in a nanowire system for quantum photonics. Nat. Mater. 2013, 12, 439–444. [Google Scholar] [CrossRef]
- Kozlovskii, A.L.; Kadyrzhanov, K.K.; Zdorovets, M.V. Structural and Conductive Characteristics of Fe/Co Nanotubes. Russ. J. Electrochem. 2018, 54, 178–185. [Google Scholar] [CrossRef]
- Kozlovskiy, A.; Zhanbotin, A.; Zdorovets, M.; Manakova, I.; Ozernoy, A.; Kadyrzhanov, K.; Rusakov, V. Study of Ni/Fe nanotube properties. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2015, 365, 663–667. [Google Scholar] [CrossRef]
- Mashentseva, A.; Borgekov, D.; Kislitsin, S.; Sdorovets, M.; Migunova, A. Comparative catalytic activity of PET track-etched membranes with embedded silver and gold nanotubes. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2015, 365, 70–74. [Google Scholar] [CrossRef]
- Demyanov, S.; Kaniukov, E.; Petrov, A.; Sivakov, V. Positive magnetoresistive effect in Si/SiO2 (Cu/Ni) nanostructures. Sens. Actuators A Phys. 2014, 216, 64–68. [Google Scholar] [CrossRef]
- Sivakov, V.; Kaniukov, E.Y.; Petrov, A.; Korolik, O.; Mazmanik, A.; Bochmann, A.; Teichert, S.; Hidi, I.J.; Schleusener, A.; Gialla, D.; et al. Novel silver nanostructures formation in porous Si/SiO2 matrix. J. Cryst. Growth 2014, 400, 21–26. [Google Scholar] [CrossRef]
- Fertig, N.; Blick, R.H.; Behrends, J.C. Whole cell patch clamp recording performed on a planar glass chip. Biophys. J. 2002, 82, 3056–3062. [Google Scholar] [CrossRef]
- Hoppe, K.; Fahrner, W.R.; Fink, D.; Dhamodoran, S.; Petrov, A.; Chandra, A.; Saad, A.; Faupel, F.; Chakravadhanula, V.S.K.; Zaporotchenko, V. An ion track based approach to nano-and micro-electronics. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2008, 266, 1642–1646. [Google Scholar] [CrossRef]
- Kaniukov, E.; Bundyukova, V.; Kutuzau, M.; Yakimchuk, A. Preculiarities of Formation and Characterization of SiO2/Si Ion-Track Template. In Fundamental and Applied Nano-Electromagnetics II: THz Circuits, Materials, Devices; Springer: Dordrecht, The Netherlands, 2019; pp. 41–57. [Google Scholar] [CrossRef]
- Dallanora, A.; Marcondes, T.L.; Bermudez, G.G.; Fichtner, P.F.P.; Trautman, C.; Toulemonde, M.; Papaleo, R.M. Nanoporous SiO2/Si thin layers produced by ion track etching: Dependence on the ion energy and criterion for etchability. J. Appl. Phys. 2008, 104, 024307. [Google Scholar] [CrossRef]
- Giniyatova, S.; Dauletbekova, A.; Baimukhanov, Z.; Vlasukova, L.; Akilbekov, A. Structure, electrical properties and lum. of ZnO NCs deposited in SiO2/Si track templates. Radiat. Meas. 2019, 125, 52–56. [Google Scholar] [CrossRef]
- Balakhayeva, R.; Akilbekov, A.; Baimukhanov, Z.; Giniyatova, S.; Zdorovets, M.; Gorin, Y.; Popov, A.I.; Dauletbekova, A. Structure properties of CdTe nanocrystals created in SiO2/Si ion track templates. Surf. Coat. Technol. 2020, 401, 126269. [Google Scholar] [CrossRef]
- Dauletbekova, A.; Akylbekova, A.; Sarsekhan, G.; Usseinov, A.; Baimukhanov, Z.; Kozlovskiy, A.; Vlasukova, L.A.; Komarov, F.F.; Popov, A.I.; Akilbekov, A.T. Ion-track template synthesis and characterization of ZnSeO3 Nanocrystals. Crystals 2022, 12, 817. [Google Scholar] [CrossRef]
- Dovesi, R.; Erba, A.; Orlando, R.; Zicovich-Wilson, C.M.; Civalleri, B.; Maschio, L.; Rérat, M.; Casassa, S.; Baima, J.; Salustro, S.; et al. Quantum-mechanical condensed matter simulations with CRYSTAL. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1360. [Google Scholar] [CrossRef]
- Dauletbekova, A.K.; Alzhanova, A.Y.; Akilbekov, A.T.; Mashentseva, A.A.; Zdorovets, M.V.; Balabekov, K.N. Synthesis of Si/SiO2/ZnO nanoporous materials using chemical and electrochemical deposition techniques. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2016; Volume 1767, p. 020005. [Google Scholar] [CrossRef]
- Laun, J.; Bredow, T. BSSE-corrected consistent Gaussian basis sets of triple-zeta valence with polarization quality of the fifth period for solid-state calculations. J. Comput. Chem. 2022, 12, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Vilela Oliveira, D.; Peintinger, M.F.; Laun, J.; Bredow, T. BSSE-correction scheme for consistent gaussian basis sets of double-and triple-zeta valence with polarization quality for solid-state calculations. J. Comput. Chem. 2019, 27, 2364–2376. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colic-Salvetti correlation-energy formula into a Functional of the Electron Density. Phys. Rev. B 1998, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Mulliken, R.S. Electronic population analysis on LCAO–MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies. J. Chem. Phys. 1955, 23, 1841–1846. [Google Scholar] [CrossRef]
- Slassi, A.; Hammi, M.; Oumekloul, Z.; Nid-bahami, A.; Arejdal, M.; Ziat, Y.; El Rhazouani, O. Effect of halogens doping on transparent conducting properties of SnO2 rutile: An ab initio investigation. Opt. Quantum Electron. 2018, 50, 8. [Google Scholar] [CrossRef]
- Balakrishnan, K.; Veerapandy, V.; Fjellvag, V.; Vajeeston, P. First-principles exploration into the physical and chemical properties of certain newly identified SnO2 polymorphs. ACS Omega 2022, 12, 10382–10393. [Google Scholar] [CrossRef]
- Arlinghaus, F.J. Energy bands in stannic oxide (SnO2). J. Phys. Chem. Solids 1974, 8, 931–935. [Google Scholar] [CrossRef]
- Barbarat, P.; Matar, S.F. First-principles investigations of the electronic, optical and chemical bonding properties of SnO2. Comput. Mater. Sci. 1998, 1–4, 368–372. [Google Scholar] [CrossRef]
- Kucheyev, S.O.; Baumann, T.F.; Sterne, P.A.; Wang, Y.M.; van Buuren, T.; Hamza, A.V.; Terminello, L.J.; Willey, T.M. Surface electronic states in three-dimensional SnO2 nanostructures. Phys. Rev. B 2005, 3, 035404. [Google Scholar] [CrossRef]
- Nagasawa, M.; Shionoya, S. Temperature dependence of the fundamental optical absorption edge in stannic oxide. J. Phys. Soc. Jpn. 1971, 4, 1118–1123. [Google Scholar] [CrossRef]
- Themlin, J.M.; Sporken, R.; Darville, K.; Caudano, R.; Gilles, J.M.; Johnson, R.L. Resonant-photoemission study of SnO2: Cationic origin of the defect band-gap states. Phys. Rev. B 1990, 18, 11914. [Google Scholar] [CrossRef] [PubMed]
- Maki-Jaskari, M.A.; Rantala, T.T. Band structure and optical parameters of the SnO2 (110) surface. Phys. Rev. B 2001, 7, 075407. [Google Scholar] [CrossRef]
- Suito, K.; Kawai, N.; Masuda, Y. High pressure synthesis of orthorhombic SnO2. Mater. Res. Bull. 1975, 10, 677–680. [Google Scholar] [CrossRef]
- Shieh, S.R.; Kubo, A.; Duffy, T.S.; Prakapenka, V.B.; Shen, G. High-pressure phases in SnO2 to 117 GPa. Phys. Rev. B 2006, 73, 014105. [Google Scholar] [CrossRef]
- Chen, Z.; Lai, J.K.L.; Shek, C.H. Facile strategy and mechanism for orthorhombic SnO2 thin films. Appl. Phys. Lett. 2006, 89, 231902. [Google Scholar] [CrossRef]
- Kaplan, L.; Ben-Shalom, A.; Boxman, R.L.; Goldsmith, S.; Rosenberg, U.; Nathan, M. Annealing and Sb-doping of Sn—O films produced by filtered vacuum arc deposition: Structure and electro-optical properties. Thin Solid Film. 1994, 253, 1–8. [Google Scholar] [CrossRef]
- Lamelas, F.J.; Reid, S.A. Thin-film synthesis of the orthorhombic phase of SnO2. Phys. Rev. B 1999, 60, 9347. [Google Scholar] [CrossRef]
- Bae, J.Y.; Park, J.; Kim, H.Y.; Kim, H.S.; Park, J.S. Facile route to the controlled synthesis of tetragonal and orthorhombic SnO2 films by mist chemical vapor deposition. ACS Appl. Mater. Interfaces 2015, 7, 12074–12079. [Google Scholar] [CrossRef] [PubMed]
- Mueller, E. RHEED-Untersuchungen einer grenzschichtstruktur von SnO2 auf quarz. Acta Crystallogr. Sect. B Struct. Sci. 1984, 40, 359–363. [Google Scholar] [CrossRef]
- Sangaletti, L.; Depero, L.E.; Dieguez, A.; Marca, G.; Morante, J.R.; Romano-Rodriguez, A.; Sberveglieri, G. Microstructure and morphology of tin dioxide multilayer thin film gas sensors. Sens. Actuators B Chem. 1997, 44, 268–274. [Google Scholar] [CrossRef]
- Sberveglieri, G.; Faglia, G.; Groppelli, S.; Nelli, P.; Taroni, A. A novel PVD technique for the preparation of SnO2 thin films as C2H5OH sensors. Sens. Actuators B Chem. 1992, 7, 721–726. [Google Scholar] [CrossRef]
- Masuda, Y. Recent advances in SnO2 nanostructure based gas sensors. Sens. Actuators B Chem. 2022, 364, 131876. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, Y.; Liu, J.; Li, H.; Hu, Z.; Luo, X.; Gao, N.; Zhang, B.; Jiang, J.; Zhong, A.; et al. Sensitive H2 gas sensors based on SnO2 nanowires. Sens. Actuators B Chem. 2021, 345, 130334. [Google Scholar] [CrossRef]
- Park, H.; Kim, J.; Vivod, D.; Kim, S.; Mirzaei, A.; Zahn, D.; Park, C.; Kim, S.S.; Halik, M. Chemical-recognition-driven selectivity of SnO2-nanowire-based gas sensors. Nano Today 2021, 40, 101265. [Google Scholar] [CrossRef]
- Sharma, A.; Khosla, A.; Arya, S. Synthesis of SnO2 nanowires as a reusable and flexible electrode for electrochemical detection of riboflavin. Microchem. J. 2020, 156, 104858. [Google Scholar] [CrossRef]
- Dai, Z.R.; Gole, J.L.; Stout, J.D.; Wang, Z.L. Tin oxide nanowires, nanoribbons, and nanotubes. J. Phys. Chem. B 2002, 106, 1274–1279. [Google Scholar] [CrossRef]
- Dai, Z.R.; Pan, Z.W.; Wang, Z.L. Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater. 2003, 13, 9–24. [Google Scholar] [CrossRef]
- Ihn, S.G.; Song, J.I.; Kim, T.W.; Leem, D.S.; Lee, T.; Lee, S.G.; Koh, E.K.; Song, K. Morphology-and orientation-controlled gallium arsenide nanowires on silicon substrates. Nano Lett. 2007, 7, 39–44. [Google Scholar] [CrossRef]
- Arbiol, J.; Kalache, B.; Roca i Cabarrocas, P.; Morante, J.R.; Fontcuberta i Morral, A. Influence of Cu as a catalyst on the properties of silicon nanowires synthesized by the vapour–solid–solid mechanism. Nanotechnology 2007, 18, 305606. [Google Scholar] [CrossRef]
- Dauletbekova, A.; Vlasukova, L.; Baimukhanov, Z.; Akilbekov, A.; Kozlovskiy, A.; Giniyatova, S.; Seitbayev, A.; Usseinov, A.; Akylbekova, A. Synthesis of ZnO Nanocrystals in SiO2/Si Track Template: Effect of Electrodeposition Parameters on Structure. Phys. Status Solidi B 2019, 256, 1800408. [Google Scholar] [CrossRef]
- Arbiol, J.; Comini, E.; Faglia, G.; Sberveglieri, G.; Morante, J.R. Orthorhombic Pbcn SnO2 nanowires for gas sensing applications. J. Cryst. Growth 2008, 310, 253–260. [Google Scholar] [CrossRef]
- Gu, F.; Wang, S.F.; Lu, M.K.; Zhou, G.J.; Xu, D.; Yuan, D.R. Photoluminescence properties of SnO2 nanoparticles synthesized by sol−gel method. J. Phys. Chem. B 2004, 108, 8119–8123. [Google Scholar] [CrossRef]
- Chowdhury, P.S.; Saha, S.; Patra, A. Influence of nanoenvironment on luminescence of Eu3+ activated SnO2 nanocrystals. Solid State Commun. 2004, 131, 785–788. [Google Scholar] [CrossRef]
- Faglia, G.; Baratto, C.; Sberveglieri, G.; Zha, M.; Zappettini, A. Adsorption effects of NO2 at ppm level on visible photoluminescence response of SnO2 nanobelts. Appl. Phys. Lett. 2005, 86, 011923. [Google Scholar] [CrossRef]
- Maestre, D.; Cremades, A.; Piqueras, J. Growth and luminescence properties of micro-and nanotubes in sintered tin oxide. J. Appl. Phys. 2005, 97, 044316. [Google Scholar] [CrossRef]
- Gu, F.; Wang, S.F.; Song, C.F.; Lu, M.K.; Qi, Y.X.; Zhou, G.J.; Xu, D.; Yuan, D.R. Synthesis and luminescence properties of SnO2 nanoparticles. Chem. Phys. Lett. 2003, 372, 451–454. [Google Scholar] [CrossRef]
- Munnix, S.; Schmeits, M. Electronic structure of tin dioxide surfaces. Phys. Rev. B 1983, 27, 7624. [Google Scholar] [CrossRef]
- Chiodini, N.; Paleari, A.; DiMartino, D.; Spinolo, G. SnO2 nanocrystals in SiO2: A wide-band-gap quantum-dot system. Appl. Phys. Lett. 2002, 81, 1702–1704. [Google Scholar] [CrossRef]
- Vanheusden, K.; Warren, W.L.; Seager, C.H.; Tallant, D.R.; Voigt, J.A.; Gnade, B.E. Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 1996, 79, 7983–7990. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Q.; Xu, C. Single-narrow-band red upconversion fluorescence of ZnO nanocrystals codoped with Er and Yb and its achieving mechanism. J. Appl. Phys. 2008, 104, 064701. [Google Scholar] [CrossRef]
- Godinho, K.G.; Walsh, A.; Watson, G.W. Energetic and electronic structure analysis of intrinsic defects in SnO2. J. Phys. Chem. C 2009, 113, 439–448. [Google Scholar] [CrossRef]
- Zhang, W.F.; Zhang, M.S.; Yin, Z.; Chen, Q. Photoluminescence in anatase titanium dioxide nanocrystals. Appl. Phys. B 2000, 70, 261–265. [Google Scholar] [CrossRef]
- Bhatnagar, M.; Kaushik, V.; Kaushal, A.; Singh, M.; Mehta, B. Structural and photoluminescence properties of tin oxide and tin oxide: C core–shell and alloy nanoparticles synthesised using gas phase technique. AIP Adv. 2016, 6, 095321. [Google Scholar] [CrossRef]
- Rani, S.; Roy, S.; Karar, N.; Bhatnagar, M. Structure, microstructure and photoluminescence properties of Fe doped SnO2 thin films. Solid State Commun. 2007, 141, 214–218. [Google Scholar] [CrossRef]
- Her, Y.C.; Wu, J.Y.; Lin, Y.R.; Tsai, S.Y. Low-temperature growth and blue luminescence of SnO2 nanoblades. Appl. Phys. Lett. 2006, 89, 043115. [Google Scholar] [CrossRef]
- Hu, J.Q.; Bando, Y.; Golberg, D. Self-catalyst growth and optical properties of novel SnO2 fishbone-like nanoribbons. Chem. Phys. Lett. 2003, 372, 758–762. [Google Scholar] [CrossRef]
- Cai, D.; Su, Y.; Chen, Y.; Jiang, J.; He, Z.; Chen, L. Synthesis and photoluminescence properties of novel SnO2 asterisk-like nanostructures. Mater. Lett. 2005, 59, 1984–1988. [Google Scholar] [CrossRef]
- Sinha, S.K.; Bhattacharya, R.; Ray, S.K.; Manna, I. Influence of deposition temperature on structure and morphology of nanostructured SnO2 films synthesized by pulsed laser deposition. Mater. Lett. 2011, 65, 146–149. [Google Scholar] [CrossRef]
- Duan, J.; Gong, J.; Huang, H.; Zhao, X.; Cheng, G.; Yu, Z.; Yang, S. Multiform structures of SnO2 nanobelts. Nanotechnology 2007, 18, 055607. [Google Scholar] [CrossRef]
- Zhang, L.; Ge, S.; Zuo, Y.; Zhang, B.; Xi, L. Influence of oxygen flow rate on the morphology and magnetism of SnO2 nanostructures. J. Phys. Chem. C 2010, 114, 7541–7547. [Google Scholar] [CrossRef]
- Hu, J.Q.; Bando, Y.; Liu, Q.L.; Golberg, D. Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons. Adv. Funct. Mater. 2003, 13, 493–496. [Google Scholar] [CrossRef]
- He, J.H.; Wu, T.H.; Hsin, C.L.; Li, K.M.; Chen, L.J.; Chueh, Y.L.; Chou, L.J.; Wang, Z.L. Beaklike SnO2 nanorods with strong photoluminescent and field-emission properties. Small 2006, 2, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Touskova, J.; Tousek, J.; Klier, E.; Kuzel, R. Preparation and basic electrical properties of CdTe thick films. Phys. Status Solidi 1979, 56, 315–322. [Google Scholar] [CrossRef]
- Davis, E.A. States in the gap and defects in amorphous semiconductors. Amorph. Semicond. 2005, 36, 41–72. [Google Scholar] [CrossRef]
- Belyaev, A.P.; Rubets, V.P.; Nuzhdin, M.Y. Electrical properties of cadmium telluride films synthesized in a thermal field with a temperature gradient. Semiconductors 2003, 37, 646–648. [Google Scholar] [CrossRef]
Phase Name | Structure Type | Space Group | (hkl) | 2θ | d, Å | L, nm | FWHM | Cell Parameters, Å | Volume, Å3 | Density, g/cm3 | Degree of Crystallinity, % | Phase Content, % |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SnO2 | Orthorhombic | Pbca (61) | 202 | 40.219 | 2.24046 | 19.39 | 0.485 | a = 9.97195 (10.05) b = 5.11601 (5.10) c = 5.03283 (5.18) | 256.76 (266.26) | 7.819 (7.57) | 41.8 | 100 |
H, nm | T, K | m | hk, Å | Barrier Height E, eV |
---|---|---|---|---|
700 | 300 | 1044 | 6.7 | 3.82 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baimukhanov, Z.; Dauletbekova, A.; Junisbekova, D.; Kalytka, V.; Akilbekov, A.; Akylbekova, A.; Baubekova, G.; Aralbayeva, G.; Bazarbek, A.-D.; Usseinov, A.; et al. Synthesis of Orthorhombic Tin Dioxide Nanowires in Track Templates. Materials 2024, 17, 1226. https://doi.org/10.3390/ma17061226
Baimukhanov Z, Dauletbekova A, Junisbekova D, Kalytka V, Akilbekov A, Akylbekova A, Baubekova G, Aralbayeva G, Bazarbek A-D, Usseinov A, et al. Synthesis of Orthorhombic Tin Dioxide Nanowires in Track Templates. Materials. 2024; 17(6):1226. https://doi.org/10.3390/ma17061226
Chicago/Turabian StyleBaimukhanov, Zein, Alma Dauletbekova, Diana Junisbekova, Valeriy Kalytka, Abdirash Akilbekov, Aiman Akylbekova, Guldar Baubekova, Gulnara Aralbayeva, Assyl-Dastan Bazarbek, Abay Usseinov, and et al. 2024. "Synthesis of Orthorhombic Tin Dioxide Nanowires in Track Templates" Materials 17, no. 6: 1226. https://doi.org/10.3390/ma17061226
APA StyleBaimukhanov, Z., Dauletbekova, A., Junisbekova, D., Kalytka, V., Akilbekov, A., Akylbekova, A., Baubekova, G., Aralbayeva, G., Bazarbek, A.-D., Usseinov, A., & Popov, A. I. (2024). Synthesis of Orthorhombic Tin Dioxide Nanowires in Track Templates. Materials, 17(6), 1226. https://doi.org/10.3390/ma17061226