Green- and Blue-Emitting Tb3+-Activated Linde Type A Zeolite-Derived Boro-Aluminosilicate Glass for Deep UV Detection/Imaging
Abstract
1. Introduction
2. Experimental Processes
2.1. Sample Preparation
2.2. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, I.; Singh, S.; Bhagwan, S.; Singh, D. Rare earth (RE) doped phosphors and their emerging applications: A review. Ceram. Int. 2021, 47, 19282–19303. [Google Scholar] [CrossRef]
- Pisarski, W.A. Rare Earth Doped Glasses/Ceramics: Synthesis, Structure, Properties and Their Optical Applications. Materials 2022, 15, 8099. [Google Scholar] [CrossRef] [PubMed]
- Erol, E.; Vahedigharehchopogh, N.; Kıbrıslı, O.; Ersundu, M.Ç.; Ersundu, A.E. Recent progress in lanthanide-doped luminescent glasses for solid-state lighting applications-a review. J. Phys. Condens. Matter. 2021, 33, 483001. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, Y.; Geng, D.; Lian, J.; Zhang, G.; Hou, Z.; Lin, J. CaGdAlO4:Tb3+/Eu3+ as promising phosphors for full-color field emission displays. J. Mater. Chem. C 2014, 2, 9924–9933. [Google Scholar] [CrossRef]
- Kadyan, S.; Singh, S.; Sheoran, S.; Samantilleke, A.; Mari, B.; Singh, D. Optical and structural investigations of MLaAlO4:Eu3+ (M = Mg2+, Ca2+, Sr2+, and Ba2+) nanophosphors for full-color displays. J. Mater. Sci. Mater. Electron. 2020, 31, 414–422. [Google Scholar] [CrossRef]
- Yanagida, T.; Kato, T.; Nakauchi, D.; Kawaguchi, N. Fundamental aspects, recent progress and future prospects of inorganic scintillators. Jpn. J. Appl. Phys. 2023, 62, 010508. [Google Scholar] [CrossRef]
- Righini, G.; Enrichi, F.; Zur, L.; Ferrari, M. Rare-earth doped glasses and light managing in solar cells. J. Phys. Conf. Ser. 2019, 1221, 012028. [Google Scholar] [CrossRef]
- Huang, X.; Han, S.; Huang, W.; Liu, X. Enhancing solar cell efficiency: The search for luminescent materials as spectral converters. Chem. Soc. Rev. 2013, 42, 173–201. [Google Scholar] [CrossRef]
- Tao, K.; Ye, Y.; Bai, H.; Wang, S. Synthesis and luminescence characteristics of Tb3+-doped fluorophosphate glass for UV detection. J. Non-Cryst. Solids 2021, 572, 121012. [Google Scholar] [CrossRef]
- Kuro, T.; Okada, G.; Kawaguchi, N.; Fujimoto, Y.; Masai, H.; Yanagida, T. Scintillation properties of rare-earth doped NaPO3-Al(PO3)3 glasses. Opt. Mater. 2016, 62, 561–568. [Google Scholar] [CrossRef]
- Silversmith, A.J.; Boye, D.M.; Brewer, K.S.; Gillespie, C.E.; Lu, Y.; Campbell, D.L. 5D3→7FJ emission in terbium-doped sol–gel glasses. J. Lumin. 2006, 121, 14–20. [Google Scholar] [CrossRef]
- Pankratov, V.; Popov, A.; Kotlov, A.; Feldmann, C. Luminescence of nano- and macrosized LaPO4:Ce,Tb excited by synchrotron radiation. Opt. Mater. 2011, 33, 1102–1105. [Google Scholar] [CrossRef]
- Beladi-Mousavi, M.; Walder, L. Photo-Electrochemical Device Enabling Luminescence Switching of LaPO4:Ce,Tb Nanoparticle Layers. Adv. Opt. Mater. 2020, 9, 2001891. [Google Scholar]
- dos Santos, J.F.M.; Zanuto, V.S.; Soares, A.C.C.; Savi, E.; Nunes, L.A.D.O.; Baesso, M.L.; Catunda, T. Evaluating the link between blue-green luminescence and cross-relaxation processes in Tb3+-doped glasses. J. Lumin. 2021, 240, 118430. [Google Scholar] [CrossRef]
- de Graaf, D.; Stelwagen, S.; Hintzen, H.; de With, G. Tb3+ luminescence as a tool to study clustering of lanthanide ions in oxynitride glasses. J. Non-Cryst. Solids 2003, 325, 29–33. [Google Scholar] [CrossRef]
- Linganna, K.; Ju, S.; Basavapoornima, C.; Venkatramu, V.; Jayasankar, C.K. Luminescence and decay characteristics of Tb 3+-doped fluorophosphate glasses. J. Asian Ceram. Soc. 2018, 6, 82–87. [Google Scholar] [CrossRef]
- Sales, T.; Amjad, R.; Jacinto, C.; Dousti, M. Concentration dependent luminescence and cross-relaxation energy transfers in Tb3+ doped fluoroborate glasses. J. Lumin. 2019, 205, 282–286. [Google Scholar] [CrossRef]
- Kesavulu, C.; Silva, A.C.A.; Dousti, M.R.; Dantas, N.O.; de Camargo, A.; Catunda, T. Concentration effect on the spectroscopic behavior of Tb3+ ions in zinc phosphate glasses. J. Lumin. 2015, 165, 77–84. [Google Scholar] [CrossRef]
- dos Santos, J.F.M.; Astrath, N.G.C.; Baesso, M.L.; Nunes, L.A.D.O.; Catunda, T. The effect of silica content on the luminescence properties of Tb3+-doped calcium aluminosilicate glasses. J. Lumin. 2018, 202, 363–369. [Google Scholar] [CrossRef]
- Pan, Y.; Fan, Y.; Lin, H.; Zhang, D.; Xu, X.; Yao, X. Preparation and characterization of green emitting NASO:Tb3+ and red emitting NASO:Eu3+ glasses derived from ions exchanged LTA zeolite. J. Lumin. 2022, 251, 119250. [Google Scholar] [CrossRef]
- Sontakke, A.D.; Biswas, K.; Annapurna, K. Concentration-dependent luminescence of Tb3+ ions in high calcium aluminosilicate glasses. J. Lumin. 2009, 129, 1347–1355. [Google Scholar] [CrossRef]
- Juárez-Batalla, J.; Meza-Rocha, A.N.; Muñoz, H.G.; Camarillo, I.; Caldiño, U. Luminescence properties of Tb3+-doped zinc phosphate glasses for green laser application. Opt. Mater. 2016, 58, 406–411. [Google Scholar] [CrossRef]
- Linganna, K.; Sreedhar, V.B.; Jayasankar, C.K. Luminescence properties of Tb3+ ions in zinc fluorophosphate glasses for green laser applications. Mater. Res. Bull. 2015, 67, 196–200. [Google Scholar] [CrossRef]
- Sun, X.Y.; Yu, X.G.; Wang, W.F.; Li, Y.N.; Zhang, Z.J.; Zhao, J.T. Luminescent properties of Tb3+-activated B2O3–GeO2–Gd2O3 scintillating glasses. J. Non-Cryst. Solids 2013, 379, 127–130. [Google Scholar] [CrossRef]
- Żur, L. Structural and luminescence properties of Eu3+, Dy3+ and Tb3+ ions in lead germanate glasses obtained by conventional high-temperature melt-quenching technique. J. Mol. Struct. 2013, 1041, 50–54. [Google Scholar] [CrossRef]
- Kawano, N.; Kawaguchi, N.; Okada, G.; Fujimoto, Y.; Yanagida, T. Photoluminescence, scintillation and TSL properties of Tb-doped strontium aluminoborate glasses. Radiat. Meas. 2019, 124, 69–73. [Google Scholar] [CrossRef]
- Kumar, V.; Luo, Z. A Review on X-ray Excited Emission Decay Dynamics in Inorganic Scintillator Materials. Photonics 2021, 8, 71. [Google Scholar] [CrossRef]
- Zang, D.S.; Song, J.H.; Park, D.H.; Kim, Y.C.; Yoon, D.H. New fast-decaying green and red phosphors for 3D application of plasma display panels. J. Lumin. 2009, 129, 1088–1093. [Google Scholar] [CrossRef]
- Xia, F.; Liu, S.; Wang, Y.; Mao, J.; Li, X.; Wang, Y.; Chen, G. Fast and intense green emission of Tb3+ in borosilicate glass modified by Cu+. Sci. Rep. 2015, 5, 15387. [Google Scholar] [CrossRef] [PubMed]
- Teng, L.; Zhang, W.; Chen, W.; Cao, J.; Sun, X.; Guo, H. Highly efficient luminescence in bulk transparent Sr2GdF7:Tb3+ glass ceramic for potential X-ray detection. Ceram. Int. 2020, 46, 10718–10722. [Google Scholar] [CrossRef]
- Struebing, C.; Lee, G.; Wagner, B.; Kang, Z. Synthesis and luminescence properties of Tb doped LaBGeO5 and GdBGeO5 glass scintillators. J. Alloys Compd. 2016, 686, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Greaves, G.N.; Meneau, F.; Sapelkin, A.; Colyer, L.M.; Ap Gwynn, I.; Wade, S.; Sankar, G. The rheology of collapsing zeolites amorphized by temperature and pressure. Nat. Mater. 2003, 2, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lin, H.; Xu, L.; Hong, R.; Zhang, D.; Zhou, S. White emitting aluminosilicate glass phosphors derived from Dy3+, Ag+ co-exchanged LTA zeolite. Ceram. Int. 2020, 46, 28933–28938. [Google Scholar] [CrossRef]
- Fan, Y.; Lin, H.; Liu, H.; Zhang, L.; Wang, J.; Xie, Q.; Zhou, L.; Hong, R.; Zhang, D.; Tian, Y.; et al. Ion-exchanged LTA zeolite derived nepheline phase NaAlSiO4:Eu2+ ceramic phosphor for laser illumination. Ceram. Int. 2021, 47, 30514–30522. [Google Scholar] [CrossRef]
- Bao, H.; Lin, H.; Zhang, D.; Hong, R.; Tao, C.; Han, Z.; Yin, X.; Pan, Y.; Zhou, S.; Zhang, Z.-J.; et al. SrAlSiN3:Eu~(2+) containing phosphor-in-glass: A color converter for solid state laser lighting. Opt. Mater. 2022, 126, 112169. [Google Scholar] [CrossRef]
- Cao, J.; Wang, X.; Li, X.; Wei, Y.; Chen, L.; Guo, H. Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing KLu2F7 nano-crystals. J. Lumin. 2016, 170, 207–211. [Google Scholar] [CrossRef]
- Papynov, E.; Belov, A.; Shichalin, O.; Buravlev, I.Y.; Azon, S.; Golub, A.; Gerasimenko, A.; Parotkina, Y.; Zavjalov, A.; Tananaev, I.; et al. SrAl2Si2O8 Ceramic Matrices for 90Sr Immobilization Obtained via Spark Plasma Sintering-Reactive Synthesis. Nucl. Eng. Technol. 2021, 53, 2289–2294. [Google Scholar] [CrossRef]
- Shichalin, O.; Papynov, E.; Ivanov, N.; Balanov, M.; Dran’Kov, A.; Shkuratov, A.; Zarubina, N.; Fedorets, A.; Mayorov, V.; Lembikov, A.; et al. Study of adsorption and immobilization of Cs+, Sr2+, Co2+, Pb2+, La3+ ions on Na-Faujasite zeolite transformed in solid state matrices. Sep. Purif. Technol. 2024, 332, 125662. [Google Scholar] [CrossRef]
- Dran’Kov, A.; Shichalin, O.; Papynov, E.; Nomerovskii, A.; Mayorov, V.; Pechnikov, V.; Ivanets, A.; Buravlev, I.; Yarusova, S.; Zavjalov, A.; et al. Hydrothermal synthesis, structure and sorption performance to cesium and strontium ions of nanostructured magnetic zeolite composites. Nucl. Eng. Technol. 2022, 54, 1991–2003. [Google Scholar] [CrossRef]
Nominal (wt%) | Experimental (wt%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Na | Al | Si | O | B | Tb | Na | Al | Si | O | B | Tb | Y | |
#1 | 8.5 | 10.0 | 10.4 | 58.7 | 9.8 | 0.2 | 6.2 | 15.1 | 25.3 | 47.9 | 0 | 2.4 | 3.2 |
#2 | 8.5 | 10.0 | 10.3 | 58.3 | 9.8 | 0.9 | 6.8 | 16.95 | 21.2 | 45.1 | 0 | 3.5 | 6.5 |
#3 | 7.8 | 9.1 | 9.5 | 54.8 | 9.0 | 7.7 | 10.1 | 12.65 | 13.8 | 45.1 | 0 | 6.7 | 11.8 |
Tb3+-Doped Glass Material | Composition | Decay Time (ms) | Refs. |
---|---|---|---|
LTA zeolite-derived boro-aluminosilicate | xTb2O3-68(Na2O-Al2O3-SiO2)–32B2O3 (x = 0.2, 1.0 and 10 extra wt%) | τ1~1.2 μs, τ2~12 μs τm = 18, 14, 17 μs | Present study |
calcium aluminosilicate | 47.2CaO-41.3Al2O-4.1MgO-7.0SiO2-xTb4O7 (x = 0.04–15) (in wt%) and 33.2CaO-27.7Al2O3-4.1MgO-34SiO2-0.5Tb4O7 (in wt%) | 1.9, 2.3 | [14,19] |
fluorophosphate | 44P2O5-17K2O-(29 − x) SrF2-9Al2O3-x Tb4O7 (x = 0.1–4) (in mol%) | 2.65–2.94 | [16] |
fluoroborate | (50 − x)B2O3-20ZnF2-30BaF2-xTbF3 (x = 0.1–4.0) (in mol%) | 3.33–4.57 | [17] |
zinc phosphate | 60P2O5-15ZnO-5Al2O3-10BaO-10PbO-xTb2O3 (in mol%) (x = 1.0–5.0) (in wt%) | 2.62–2.94 | [18] |
LTA zeolite-derived aluminosilicate | Na+ was ion-exchanged with Tb3+ in Na12Al12Si12O48 | 2.398 | [19] |
calcium aluminosilicate | (100 − x)(58SiO2-23CaO-5Al2O3-4MgO-0NaF in mol%)-xTb2O3 (x = 0.25–40 in wt%) | 2.32–3.38 | [20] |
zinc phosphate | (100.0 − x)Zn(PO3)2-xTb2O3 (x = 0.6–5.0) (in mol%) | 2.76–2.97 | [22] |
zinc fluorophosphate | 44P2O5-17K2O-9Al2O3-(29 − x)ZnF2-xTb4O7 (x = 0.1–2.0) (in mol%) | 3.12–3.78 | [23] |
borogermanate | 25B2O3-40GeO2-(35 − x)Gd2O3-xTb2O3 (x = 0.25–16) (in mol%) | 1.0–1.8 | [24] |
lead germanate | 45PbO-45GeO2-9.5Ga2O3-0.5Tb2O3 (in mol%) | 1.34 | [25] |
strontium aluminoborate | 50B2O3-15Al2O3-35-xSrO-xTb4O7 (x = 0.1–5.0) (in mol%) | 2.2–2.6 | [26] |
strontium fluoroaluminate | 70SiO2-7Al2O3-16SrF2-7GdF3-4TbF3 (in mol%) | ~3.1 | [30] |
borogermanate | 50GeO2-25B2O3-(25 − x)La2O3/Gd2O3-xTb2O3 (x = 1–4) | 1.87–1.97 | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Hou, S.; Yang, Z.; Huang, X.; Guo, Y.; Ji, S.; Huang, X.; Wang, F.; Hu, Q.; Guo, X. Green- and Blue-Emitting Tb3+-Activated Linde Type A Zeolite-Derived Boro-Aluminosilicate Glass for Deep UV Detection/Imaging. Materials 2024, 17, 671. https://doi.org/10.3390/ma17030671
Xiao Y, Hou S, Yang Z, Huang X, Guo Y, Ji S, Huang X, Wang F, Hu Q, Guo X. Green- and Blue-Emitting Tb3+-Activated Linde Type A Zeolite-Derived Boro-Aluminosilicate Glass for Deep UV Detection/Imaging. Materials. 2024; 17(3):671. https://doi.org/10.3390/ma17030671
Chicago/Turabian StyleXiao, Yongneng, Shaoyi Hou, Zhenhuai Yang, Xingxing Huang, Yuanjun Guo, Siyu Ji, Xiaochan Huang, Fengshuang Wang, Qiang Hu, and Xiaodong Guo. 2024. "Green- and Blue-Emitting Tb3+-Activated Linde Type A Zeolite-Derived Boro-Aluminosilicate Glass for Deep UV Detection/Imaging" Materials 17, no. 3: 671. https://doi.org/10.3390/ma17030671
APA StyleXiao, Y., Hou, S., Yang, Z., Huang, X., Guo, Y., Ji, S., Huang, X., Wang, F., Hu, Q., & Guo, X. (2024). Green- and Blue-Emitting Tb3+-Activated Linde Type A Zeolite-Derived Boro-Aluminosilicate Glass for Deep UV Detection/Imaging. Materials, 17(3), 671. https://doi.org/10.3390/ma17030671