Mesoporous Silica-Carbon Composites with Enhanced Conductivity: Analysis of Powder and Thin Film Forms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Syntheses
2.3. Characterization
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BET | Brunauer–Emmett–Teller method (equation) |
BJH | Barret–Joyner–Halenda method |
BLZ | Blaze wavelength |
CCD | Charge-coupled device |
CTAB | Cetrimonium bromide |
CVD | Chemical vapor deposition |
EDS | X-ray energy-dispersive spectroscopy |
HCl | Hydrochloric acid |
H2SO4 | Sulfuric acid |
KIT-6 | Korean Institute of Technology No. 6 |
MCM-41 | Mobil Composition of Matter No. 41 |
MTF | Mesostructured (silica) thin film |
MTF-C | Silica-carbon thin film composite |
MTF-C_800 | Silica-carbon thin film composite heated at 800 °C |
Mw | Molecular weight |
P123 | Pluronic P123 |
SBA-15 | Santa Barbara Amorphous No. 15 |
SBA-15(P123) | SBA-15 with surfactant P123 |
SBET | BET specific surface area |
SEM | Scanning electron microscope |
Si-C | Silica-carbon composite |
Si-C_800 | Silica-carbon composite heated at 800 °C |
STP | Standard temperature and pressure |
TEM | Transmission electron microscope |
TEOS | Tetraethyl orthosilicate |
TGA | Thermogravimetric analysis |
XRD | X-ray diffraction |
References
- Khan, S.; Ajmal, Z.; Mahmood, S.; ul Haq, M. Synthesis of mesoporous composites based on α-Fe2O3/NiO nanowires for the photocatalytic degradation of rhodamine B dye. New J. Chem. 2023, 47, 10333–10346. [Google Scholar] [CrossRef]
- Nuntang, S.; Poompradub, S.; Butnark, S.; Yokoi, T.; Tatsumi, T.; Ngamcharussrivichai, C. Novel mesoporous composites based on natural rubber and hexagonal mesoporous silica: Synthesis and characterization. Mater. Chem. Phys. 2014, 143, 1199–1208. [Google Scholar] [CrossRef]
- Collard, X.; El Hajj, M.; Su, B.L.; Aprile, C. Synthesis of novel mesoporous ZnO/SiO2 composites for the photodegradation of organic dyes. Microporous Mesoporous Mater. 2014, 184, 90–96. [Google Scholar] [CrossRef]
- Tang, R.; Hong, W.; Srinivasakannan, C.; Liu, X.; Wang, X.; Duan, X. A novel mesoporous Fe-silica aerogel composite with phenomenal adsorption capacity for malachite green. Sep. Purif. Technol. 2022, 281, 119950. [Google Scholar] [CrossRef]
- Fang, Y.; Zheng, G.; Yang, J.; Tang, H.; Zhang, Y.; Kong, B.; Lv, Y.; Xu, C.; Asiri, A.M.; Zi, J.; et al. Dual-pore mesoporous carbon@ silica composite core–shell nanospheres for multidrug delivery. Angew. Chem. Int. Ed. 2014, 53, 5366–5370. [Google Scholar] [CrossRef]
- Yano, K.; Tatsuda, N.; Masuda, T.; Shimoda, T. Novel method to incorporate Si into monodispersed mesoporous carbon spheres. J. Colloid Interface Sci. 2016, 479, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Xie, R.; Chen, Y.; Pu, X.; Jiang, W.; Yao, L. A novel mesoporous zeolite-activated carbon composite as an effective adsorbent for removal of ammonia-nitrogen and methylene blue from aqueous solution. Bioresour. Technol. 2018, 268, 726–732. [Google Scholar] [CrossRef]
- Bandura, L.; Panek, R.; Madej, J.; Franus, W. Synthesis of zeolite-carbon composites using high-carbon fly ash and their adsorption abilities towards petroleum substances. Fuel 2021, 283, 119173. [Google Scholar] [CrossRef]
- Mao, H.; Qiu, M.; Chen, X.; Verweij, H.; Fan, Y. Fabrication and in-situ fouling mitigation of a supported carbon nanotube/γ-alumina ultrafiltration membrane. J. Membr. Sci. 2018, 550, 26–35. [Google Scholar] [CrossRef]
- Alsawat, M.; Altalhi, T.; Santos, A.; Losic, D. Carbon nanotubes–nanoporous anodic alumina composite membranes: Influence of template on structural, chemical, and transport properties. J. Phys. Chem. C 2017, 121, 13634–13644. [Google Scholar] [CrossRef]
- Fadeeva, N.; Volkova, I.; Kharchenko, I.; Elsuf’ev, E.; Fomenko, E.; Akimochkina, G.; Afanasova, K.; Nemtsev, I.; Tarasova, L.; Yushkin, A.; et al. Development of composite ultrafiltration membrane from fly ash microspheres and alumina nanofibers for efficient dye removal from aqueous solutions. Ceram. Int. 2024, 50, 52890–52903. [Google Scholar] [CrossRef]
- Allen, J.J.; Rosenberg, E.; Johnston, E.; Hart, C. Sol–gel synthesis and characterization of silica polyamine composites: Applications to metal ion capture. ACS Appl. Mater. Interfaces 2012, 4, 1573–1584. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; He, S.; Gong, L.; Cheng, X.; Li, C.; Li, Z.; Liu, Z.; Zhang, H. Low thermal-conductivity and high thermal stable silica aerogel based on MTMS/Water-glass co-precursor prepared by freeze drying. Mater. Des. 2017, 113, 246–253. [Google Scholar] [CrossRef]
- Wu, T.; Ke, Q.; Lu, M.; Pan, P.; Zhou, Y.; Gu, Z.; Cui, G.; Lu, H. Recent advances in carbon-silica composites: Preparation, properties, and applications. Catalysts 2022, 12, 573. [Google Scholar] [CrossRef]
- Yang, X.; Ma, H.; Zhang, G.; Li, X. Silica/Carbon Composites with Controllable Nanostructure from a Facile One-Step Method for Lithium-Ion Batteries Application. Adv. Mater. Interfaces 2019, 6, 1801809. [Google Scholar] [CrossRef]
- Elma, M.; Rampun, E.L.; Rahma, A.; Assyaifi, Z.L.; Sumardi, A.; Lestari, A.E.; Saputro, G.S.; Bilad, M.R.; Darmawan, A. Carbon templated strategies of mesoporous silica applied for water desalination: A review. J. Water Process Eng. 2020, 38, 101520. [Google Scholar] [CrossRef]
- Ayyanusamy, P.; Alphonse, R.; Minakshi, M.; Sivasubramanian, R. Synthesis of Amorphous Nickel-Cobalt Hydroxides for Ni- Zn Batteries. Chem.–A Eur. J. 2024, 30, e202402325. [Google Scholar] [CrossRef] [PubMed]
- Minakshi, M.; Mujeeb, A.; Whale, J.; Evans, R.; Aughterson, R.; Shinde, P.A.; Ariga, K.; Shrestha, L.K. Synthesis of porous carbon honeycomb structures derived from hemp for hybrid supercapacitors with improved electrochemistry. ChemPlusChem 2024, 89, e202400408. [Google Scholar] [CrossRef]
- Valle-Vigón, P.; Sevilla, M.; Fuertes, A.B. Functionalization of mesostructured silica–carbon composites. Mater. Chem. Phys. 2013, 139, 281–289. [Google Scholar] [CrossRef]
- Verma, P.; Kuwahara, Y.; Mori, K.; Raja, R.; Yamashita, H. Functionalized mesoporous SBA-15 silica: Recent trends and catalytic applications. Nanoscale 2020, 12, 11333–11363. [Google Scholar] [CrossRef]
- Larki, A.; Saghanezhad, S.J.; Ghomi, M. Recent advances of functionalized SBA-15 in the separation/preconcentration of various analytes: A review. Microchem. J. 2021, 169, 106601. [Google Scholar] [CrossRef]
- Liang, B.; Zhu, P.; Gu, J.; Yuan, W.; Xiao, B.; Hu, H.; Rao, M. Advancing Adsorption and Separation with Modified SBA-15: A Comprehensive Review and Future Perspectives. Molecules 2024, 29, 3543. [Google Scholar] [CrossRef] [PubMed]
- Suib, S.L. A review of recent developments of mesoporous materials. Chem. Rec. 2017, 17, 1169–1183. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Yu, W.; Yan, J.; Li, J.; Jin, G.; Feng, J.; Guo, Z.; Liang, X. Mesoporous silica–carbon composites fabricated by a universal strategy of hydrothermal carbonization: Controllable synthesis and applications. RSC Adv. 2018, 8, 27207–27215. [Google Scholar] [CrossRef] [PubMed]
- Koyuncu, D.D.E.; Okur, M. Removal of AV 90 dye using ordered mesoporous carbon materials prepared via nanocasting of KIT-6: Adsorption isotherms, kinetics and thermodynamic analysis. Sep. Purif. Technol. 2021, 257, 117657. [Google Scholar] [CrossRef]
- Lu, M. Supercapacitors: Materials, Systems, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Yu, A.; Chabot, V.; Zhang, J. Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications; Taylor & Francis: Abingdon, UK, 2013. [Google Scholar]
- Yang, X.; Li, Z.; Zhi, J.; Ma, J.; Hu, A. Synthesis of ultrathin mesoporous carbon through Bergman cyclization of enediyne self-assembled monolayers in SBA-15. Langmuir 2010, 26, 11244–11248. [Google Scholar] [CrossRef] [PubMed]
- Zhi, J.; Song, D.; Li, Z.; Lei, X.; Hu, A. Palladium nanoparticles in carbon thin film-lined SBA-15 nanoreactors: Efficient heterogeneous catalysts for Suzuki–Miyaura cross coupling reaction in aqueous media. Chem. Commun. 2011, 47, 10707–10709. [Google Scholar] [CrossRef] [PubMed]
- Zhi, J.; Wang, Y.; Deng, S.; Hu, A. Study on the relation between pore size and supercapacitance in mesoporous carbon electrodes with silica-supported carbon nanomembranes. Rsc Adv. 2014, 4, 40296–40300. [Google Scholar] [CrossRef]
- Zhang, Y.; Lam, F.L.Y.; Hu, X.; Yan, Z. Formation of an ink-bottle-like pore structure in SBA-15 by MOCVD. Chem. Commun. 2008, 5131–5133. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, H.; Jiang, S.; Wu, S.; Zhao, T.; Li, L.; Geng, X.; Yang, H.; Zhou, W.; Sun, C.; et al. A porous SiC/C composite material constructed by the ordered mesoporous SiC interfacing with the ordered mesoporous carbon and its supercapacitor performance. J. Alloy. Compd. 2021, 881, 160442. [Google Scholar] [CrossRef]
- He, C.; Lam, F.L.; Hu, X. Synthesis of SBA-15/carbon composite with an ink-bottle-like pore structure by a novel pulse CVD technique. Adsorption 2007, 13, 281–290. [Google Scholar] [CrossRef]
- Ali, S.; Jaffer, S.; Maitlo, I.; Shehzad, F.K.; Wang, Q.; Ali, S.; Akram, M.Y.; He, Y.; Nie, J. Photo cured 3D porous silica-carbon (SiO2–C) membrane as anode material for high performance rechargeable Li-ion batteries. J. Alloys Compd. 2020, 812, 152127. [Google Scholar] [CrossRef]
- Jiang, C.; Zhou, K.; Zhong, X.; Zhong, H. A simple organic–inorganic co-assembling route to pore-expanded ordered mesoporous carbons with 2-D hexagonal mesostructure. Powder Technol. 2014, 259, 74–80. [Google Scholar] [CrossRef]
- Huang, X.; Long, Z.; Wang, Z.; Li, S.; Zhang, P.; Leng, Y. Mesoporous silicon-carbon composites: Novel supports of platinum nanoparticles for highly efficient selective oxidation of glycerol. Chem. Eng. J. 2023, 470, 144037. [Google Scholar] [CrossRef]
- Yang, Z.; Xia, Y.; Mokaya, R. Periodic mesoporous organosilica mesophases are versatile precursors for the direct preparation of mesoporous silica/carbon composites, carbon and silicon carbide materials. J. Mater. Chem. 2006, 16, 3417–3425. [Google Scholar] [CrossRef]
- Valle-Vigón, P.; Sevilla, M.; Fuertes, A.B. Mesostructured silica–carbon composites synthesized by employing surfactants as carbon source. Microporous Mesoporous Mater. 2010, 134, 165–174. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, G.; O’Hare, D.; Wu, D.; Sun, Y. Partially graphitized carbon filaments from as-synthesized silica/surfactant composite. Carbon 2006, 44, 1969–1973. [Google Scholar] [CrossRef]
- Yoon, S.B.; Choi, B.S.; Lee, K.W.; Moon, J.K.; Choi, Y.S.; Kim, J.Y.; Cho, H.; Kim, J.H.; Kim, M.S.; Yu, J.S. New mesoporous silica/carbon composites by in situ transformation of silica template in carbon/silica nanocomposite. J. Exp. Nanosci. 2014, 9, 221–229. [Google Scholar] [CrossRef]
- Gibaud, A.; Dourdain, S.; Vignaud, G. Analysis of mesoporous thin films by X-ray reflectivity, optical reflectivity and grazing incidence small angle X-ray scattering. Appl. Surf. Sci. 2006, 253, 3–11. [Google Scholar] [CrossRef]
- Wang, Z.; Ogata, H.; Melvin, G.J.H.; Obata, M.; Morimoto, S.; Ortiz-Medina, J.; Cruz-Silva, R.; Fujishige, M.; Takeuchi, K.; Muramatsu, H.; et al. Structural evolution of hydrothermal carbon spheres induced by high temperatures and their electrical properties under compression. Carbon 2017, 121, 426–433. [Google Scholar] [CrossRef]
- Marinho, B.; Ghislandi, M.; Tkalya, E.; Koning, C.E.; de With, G. Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technol. 2012, 221, 351–358. [Google Scholar] [CrossRef]
- El Houbbadi, S.; Laskowska, M.; Walcarius, A.; Doskocz, M.; Maximenko, A.; Olejniczak, Z.; Laskowski, Ł. Revealing the molecular structure of copper phosphonate groups anchored inside SBA-15 silica channels: Theoretical and experimental study. Appl. Surf. Sci. 2024, 669, 160425. [Google Scholar] [CrossRef]
- Laskowski, L.; Laskowska, M.; Jelonkiewicz, J.; Dulski, M.; Wojtyniak, M.; Fitta, M.; Balanda, M. SBA-15 mesoporous silica free-standing thin films containing copper ions bounded via propyl phosphonate units-preparation and characterization. J. Solid State Chem. 2016, 241, 143–151. [Google Scholar] [CrossRef]
- Rouquerol, J.; Llewellyn, P.; Rouquerol, F. Is the BET equation applicable to microporous adsorbents? In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 2007; Volume 160, pp. 49–56. [Google Scholar]
- Kim, J.; Lee, J.; Hyeon, T. Direct synthesis of uniform mesoporous carbons from the carbonization of as-synthesized silica/triblock copolymer nanocomposites. Carbon 2004, 42, 2711–2719. [Google Scholar] [CrossRef]
- Kasprzykowska, R.; Kasprzykowski, F. Preparatyka organiczna środków farmaceutycznych; Wydawnictwo Uniwersytetu Gdańskiego: Warszawa, Poland, 2018. [Google Scholar]
- Matsuda, M.; Funabashi, K. Influence of functional sulfonic acid groups on styrene–divinylbenzene copolymer pyrolysis. J. Polym. Sci. Part Polym. Chem. 1987, 25, 669–673. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Cuesta, A.; Dhamelincourt, P.; Laureyns, J.; Martinez-Alonso, A.; Tascón, J.D. Raman microprobe studies on carbon materials. Carbon 1994, 32, 1523–1532. [Google Scholar] [CrossRef]
- Cançado, L.G.; Jorio, A.; Ferreira, E.M.; Stavale, F.; Achete, C.A.; Capaz, R.B.; Moutinho, M.d.O.; Lombardo, A.; Kulmala, T.; Ferrari, A.C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196. [Google Scholar] [CrossRef] [PubMed]
- Celzard, A.; Marêché, J.; Payot, F.; Furdin, G. Electrical conductivity of carbonaceous powders. Carbon 2002, 40, 2801–2815. [Google Scholar] [CrossRef]
- Nishihara, H.; Fukura, Y.; Inde, K.; Tsuji, K.; Takeuchi, M.; Kyotani, T. Carbon-coated mesoporous silica with hydrophobicity and electrical conductivity. Carbon 2008, 46, 48–53. [Google Scholar] [CrossRef]
Sample | SBET [m2/g] | Pore Volume [m3/g] | Micropore Volume [m3/g] | Micropore Area [m2/g] | Pore Diameter [nm] |
---|---|---|---|---|---|
SBA-15 | 870 | 1.48 | 0.065 | 162.631 | 7.5 |
SBA-C | 389 | 0.964 | 0.002 | 17.706 | 6.8 |
SBA-C_800 | 476 | 1.176 | 0.001 | 16.393 | 6.8 |
Sample | D Band (cm−1) | G Band (cm−1) | ID/IG | ||
---|---|---|---|---|---|
SBA-C | 1352 | 291 | 1578 | 92 | 0.9 |
SBA-C_800 | 1338 | 226 | 1575 | 100 | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karczmarska, A.; Zieliński, P.M.; Laskowski, Ł.; Prusik, K.; Pawlik, K.; Laskowska, M. Mesoporous Silica-Carbon Composites with Enhanced Conductivity: Analysis of Powder and Thin Film Forms. Materials 2024, 17, 6274. https://doi.org/10.3390/ma17246274
Karczmarska A, Zieliński PM, Laskowski Ł, Prusik K, Pawlik K, Laskowska M. Mesoporous Silica-Carbon Composites with Enhanced Conductivity: Analysis of Powder and Thin Film Forms. Materials. 2024; 17(24):6274. https://doi.org/10.3390/ma17246274
Chicago/Turabian StyleKarczmarska, Agnieszka, Piotr M. Zieliński, Łukasz Laskowski, Krystian Prusik, Katarzyna Pawlik, and Magdalena Laskowska. 2024. "Mesoporous Silica-Carbon Composites with Enhanced Conductivity: Analysis of Powder and Thin Film Forms" Materials 17, no. 24: 6274. https://doi.org/10.3390/ma17246274
APA StyleKarczmarska, A., Zieliński, P. M., Laskowski, Ł., Prusik, K., Pawlik, K., & Laskowska, M. (2024). Mesoporous Silica-Carbon Composites with Enhanced Conductivity: Analysis of Powder and Thin Film Forms. Materials, 17(24), 6274. https://doi.org/10.3390/ma17246274