VN Quantum Dots Anchored onto Carbon Nanofibers as a Superior Anode for Sodium Ion Storage
Highlights
- A novel VN quantum dots anchored onto carbon nanofiber (VN/CNF) are prepared.
- The electrode demonstrates the outstanding structural stability of carbon nanofibers and the high electrochemical activity of VN quantum dots.
Abstract
1. Introduction
2. Materials and Experimental Characterization Methods
2.1. Synthesis Details
2.2. Characterization Techniques
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. Analysis of the Structure of VN/CNF and VN
3.2. Sodium Storage Performance Research
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262. [Google Scholar] [CrossRef]
- de la Llave, E.; Borgel, V.; Park, K.J.; Hwang, J.Y.; Sun, Y.K.; Hartmann, P.; Chesneau, F.F.; Aurbach, D. Comparison between Na-Ion and Li-Ion Cells: Understanding the Critical Role of the Cathodes Stability and the Anodes Pretreatment on the Cells Behavior. ACS Appl. Mater. Interfaces 2016, 8, 1867–1875. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-W.; Seo, D.-H.; Ma, X.; Ceder, G.; Kang, K. Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries. Adv. Energy Mater. 2012, 2, 710–721. [Google Scholar] [CrossRef]
- Hao, Y.; Jiang, Y.; Zhao, L.; Ye, Z.; Wang, Z.; Chu, D.; Wu, F.; Li, L.; Xie, M.; Chen, R. Bimetallic Antimony-Vanadium Oxide Nanoparticles Embedded in Graphene for Stable Lithium and Sodium Storage. ACS Appl. Mater. Interfaces 2021, 13, 21127–21137. [Google Scholar] [CrossRef] [PubMed]
- Kubota, K.; Dahbi, M.; Hosaka, T.; Kumakura, S.; Komaba, S. Towards K-Ion and Na-Ion Batteries as “Beyond Li-Ion”. Chem. Rec. 2018, 18, 459–479. [Google Scholar] [CrossRef]
- Yang, J.; Zhai, Y.; Zhang, X.; Zhang, E.; Wang, H.; Liu, X.; Xu, F.; Kaskel, S. Perspective on Carbon Anode Materials for K+ Storage: Balancing the Intercalation-Controlled and Surface-Driven Behavior. Adv. Energy Mater. 2021, 11, 2100856. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, X.; Wu, D.; Zhao, X.; Zhou, Z. S-Doped N-Rich Carbon Nanosheets with Expanded Interlayer Distance as Anode Materials for Sodium-Ion Batteries. Adv. Mater. 2017, 29, 1604108. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, W.; Lu, S.; Xiang, Y. Carbon Anode Materials: A Detailed Comparison between Na-ion and K-ion Batteries. Adv. Energy Mater. 2021, 11, 2003640. [Google Scholar] [CrossRef]
- Gao, L.; Wang, Z.; Hu, H.; Cheng, H.; Zhang, L.; Yang, X. Nitrogen-doped carbon microfiber networks decorated with CuO/Cu clusters as self-supported anode materials for potassium ion batteries. J. Electroanal. Chem. 2020, 876, 114483. [Google Scholar] [CrossRef]
- Liang, S.; Cheng, Y.-J.; Zhu, J.; Xia, Y.; Müller-Buschbaum, P. A Chronicle Review of Nonsilicon (Sn,Sb,Ge)-Based Lithium/Sodium-Ion Battery Alloying Anodes. Small Methods 2020, 4, 2000218. [Google Scholar] [CrossRef]
- Gao, H.; Yan, X.; Niu, J.; Zhang, Y.; Song, M.; Shi, Y.; Ma, W.; Qin, J.; Zhang, Z. Scalable structural refining via altering working pressure and in-situ electrochemically-driven Cu-Sb alloying of magnetron sputtered Sb anode in sodium ion batteries. Chem. Eng. J. 2020, 388, 124299. [Google Scholar] [CrossRef]
- Song, K.; Liu, C.; Mi, L.; Chou, S.; Chen, W.; Shen, C. Recent Progress on the Alloy-Based Anode for Sodium-Ion Batteries and Potassium-Ion Batteries. Small 2021, 17, 1903194. [Google Scholar] [CrossRef] [PubMed]
- Kalisvaart, W.P.; Xie, H.; Olsen, B.C.; Luber, E.J.; Buriak, J.M. Understanding the Mechanism of Enhanced Cycling Stability in Sn–Sb Composite Na-Ion Battery Anodes: Operando Alloying and Diffusion Barriers. ACS Appl. Energy Mater. 2019, 2, 5133–5139. [Google Scholar] [CrossRef]
- Wang, Z.; Dong, K.; Wang, D.; Luo, S.; Liu, Y.; Wang, Q.; Zhang, Y.; Hao, A.; Shi, C.; Zhao, N. A nanosized SnSb alloy confined in N-doped 3D porous carbon coupled with ether-based electrolytes toward high-performance potassium-ion batteries. J. Mater. Chem. A 2019, 7, 14309–14318. [Google Scholar] [CrossRef]
- Qiu, H.; Zhao, L.; Asif, M.; Huang, X.; Tang, T.; Li, W.; Zhang, T.; Shen, T.; Hou, Y. SnO2 nanoparticles anchored on carbon foam as a freestanding anode for high performance potassium-ion batteries. Energy Environ. Sci. 2020, 13, 571–578. [Google Scholar] [CrossRef]
- Fan, L.; Song, X.; Xiong, D.; Li, X. Nitrogen-doping of graphene enhancing sodium storage of SnO2 anode. J. Electroanal. Chem. 2019, 833, 340–348. [Google Scholar] [CrossRef]
- Ni, Q.; Dong, R.; Bai, Y.; Wang, Z.; Ren, H.; Sean, S.; Wu, F.; Xu, H.; Wu, C. Superior sodium-storage behavior of flexible anatase TiO2 promoted by oxygen vacancies. Energy Storage Mater. 2020, 25, 903–911. [Google Scholar] [CrossRef]
- Yang, L.Y.; Xie, J.R.; Abliz, A.; Liu, J.; Wu, R.; Tang, S.S.; Wang, S.Y.; Wu, L.L.; Zhu, Y.Y. Hollow paramecium-like SnO2/TiO2 heterostructure designed for sodium storage. J. Solid State Chem. 2019, 274, 176–181. [Google Scholar] [CrossRef]
- Hu, J.; Xie, Y.; Zhou, X.; Zhang, Z. Engineering Hollow Porous Carbon-Sphere-Confined MoS2 with Expanded (002) Planes for Boosting Potassium-Ion Storage. ACS Appl. Mater. Interfaces 2020, 12, 1232–1240. [Google Scholar] [CrossRef]
- Ou, X.; Xiong, X.; Zheng, F.; Yang, C.; Lin, Z.; Hu, R.; Jin, C.; Chen, Y.; Liu, M. In situ X-ray diffraction characterization of NbS2 nanosheets as the anode material for sodium ion batteries. J. Power Sources 2016, 325, 410–416. [Google Scholar] [CrossRef]
- Sun, R.; Wei, Q.; Sheng, J.; Shi, C.; An, Q.; Liu, S.; Mai, L. Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate sodium ion charge storage. Nano Energy 2017, 35, 396–404. [Google Scholar] [CrossRef]
- Aristote, N.T.; Song, Z.; Deng, W.; Hou, H.; Zou, G.; Ji, X. Effect of double and triple-doping of sulfur, nitrogen and phosphorus on the initial coulombic efficiency and rate performance of the biomass derived hard carbon as anode for sodium-ion batteries. J. Power Sources 2023, 558, 232517. [Google Scholar] [CrossRef]
- Wang, S.E.; Kim, M.J.; Lee, J.W.; Chun, J.; Choi, J.; Roh, K.C.; Kang, Y.C.; Jung, D.S. A Novel High-Performance TiO2−x/TiO1−yNy Coating Material for Silicon Anode in Lithium-Ion Batteries. Small Methods 2022, 6, 2200430. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Gao, H.; Hu, G.; Zhang, Q. Nanostructured SiOx-based anodes synthesized by a scalable micelle assisted method for high-performance lithium-ion battery. Mater. Chem. Phys. 2022, 291, 126721. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, W.; Wang, J.; Wang, D.; Wang, C.; Xiong, Z.; Wu, J.; Bai, Z.; Yan, X. Scalable Synthesis of a Porous Structure Silicon/Carbon Composite Decorated with Copper as an Anode for Lithium Ion Batteries. Appl. Surf. Sci. 2023, 620, 156843. [Google Scholar] [CrossRef]
- Rasal, A.S.; Yadav, S.; Yadav, A.; Kashale, A.A.; Manjunatha, S.T.; Altaee, A.; Chang, J.-Y. Carbon Quantum Dots for Energy Applications: A Review. ACS Appl. Nano Mater. 2021, 4, 6515–6541. [Google Scholar] [CrossRef]
- Yu, Y.; Ma, T.; Huang, H. Semiconducting Quantum Dots for Energy Conversion and Storage. Adv. Funct. Mater. 2023, 33, 2213770. [Google Scholar] [CrossRef]
- Meng, D.; Wei, L.; Shi, J.; Jiang, Q.; Tang, J. A Review of Enhanced Electrocatalytic Composites Hydrogen/Oxygen Evolution Based on Quantum Dot. J. Ind. Eng. Chem. 2023, 121, 27–39. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, S.; Fan, X.-B.; Wu, L.-Z.; Zhou, Y. Mechanistic insights into the influence of surface ligands on quantum dots for photocatalysis. J. Mater. Chem. A 2023, 11, 8497–8514. [Google Scholar] [CrossRef]
- Yang, D.; Cui, Z.; Wen, Z.; Piao, Z.; He, H.; Wei, X.; Wang, L.; Mei, S.; Zhang, W.; Guo, R. Recent Updates on Functionalized Silicon Quantum-Dot-Based Nanoagents for Biomedical Applications. ACS Mater. Lett. 2023, 5, 985–1008. [Google Scholar] [CrossRef]
- Li, M.; Chen, T.; Gooding, J.; Liu, J. A Review of Carbon and Graphene Quantum Dots for Sensing. ACS Sens. 2019, 4, 1732–1748. [Google Scholar] [CrossRef]
- Huang, K.; Liu, J.; Yuan, J.; Zhao, W.; Zhao, K.; Zhou, Z. Perovskite-quantum dot hybrid solar cells: A multi-win strategy for high performance and stability. J. Mater. Chem. A 2023, 11, 4487–4509. [Google Scholar] [CrossRef]
- Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.; Cançado, L.G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1290. [Google Scholar] [CrossRef]
- Niu, J.; Zhang, W.; Li, Z.; Yang, S.; Yan, D.; Chen, S.; Zhang, Z.; Zhang, Y.; Ren, X.; Gao, P.; et al. Intercalation of van der Waals layered materials: A route towards engineering of electron correlation*. Chin. Phys. B 2020, 29, 097104. [Google Scholar] [CrossRef]
- Liu, Q.; Yao, W.; Zhan, L.; Wang, Y.; Zhu, Y.-A. V3S4 nanoparticles anchored on three-dimensional porous graphene gel for superior lithium storage. Electrochim. Acta 2018, 261, 35–41. [Google Scholar] [CrossRef]
- Qin, F.; Hu, H.; Jiang, Y.; Zhang, K.; Fang, Z.; Lai, Y.; Li, J. Mesoporous MoSe2/C composite as anode material for sodium/lithium ion batteries. J. Electroanal. Chem. 2018, 823, 67–72. [Google Scholar] [CrossRef]
- Dang, J.; Zhu, R.; Zhang, S.; Yang, L.; Chen, X.; Wang, H.; Liu, X. Bean Pod-Like SbSn/N-Doped Carbon Fibers toward a Binder Free, Free-Standing, and High-Performance Anode for Sodium-Ion Batteries. Small 2022, 18, 2107869. [Google Scholar] [CrossRef]
- Xu, L.; Xiong, P.; Zeng, L.; Liu, R.; Liu, J.; Luo, F.; Li, X.; Chen, Q.; Wei, M.; Qian, Q. Facile fabrication of a vanadium nitride/carbon fiber composite for half/full sodium-ion and potassium-ion batteries with long-term cycling performance. Nanoscale 2020, 12, 10693–10702. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Zhang, N.; Zhao, X.; Liu, N.; Qin, B.; Qiu, M.; Wang, L. A novel PbSe@CNTs anode material based on dual conversion-alloying mechanism for sodium-ion batteries. Sci. China Mater. 2023, 66, 61–68. [Google Scholar] [CrossRef]
- Zhao, D.; Zhang, Z.; Ren, J.; Xu, Y.; Xu, X.; Zhou, J.; Gao, F.; Tang, H.; Liu, S.; Wang, Z.; et al. Fe2VO4 nanoparticles on rGO as anode material for high-rate and durable lithium and sodium ion batteries. Chem. Eng. J. 2023, 451, 138882. [Google Scholar] [CrossRef]
- Xu, L.; Xiong, P.; Zeng, L.; Fang, Y.; Liu, R.; Liu, J.; Luo, F.; Chen, Q.; Wei, M.; Qian, Q. Electrospun VSe1.5/CNF composite with excellent performance for alkali metal ion batteries. Nanoscale 2019, 11, 16308–16316. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, Y.; Lin, C.; Xia, X.; Chen, X.; Xiong, P.; Chen, Q.; Wei, M.; Qian, Q.; Zeng, L. Algal residues-engaged formation of novel WVO4/V3Se4 hybrid nanostructure with carbon fiber confinement for enhanced long-term cycling stability in sodium/potassium storage. J. Alloys Compd. 2022, 892, 162177. [Google Scholar] [CrossRef]
- Xu, L.; Chen, X.; Guo, W.; Zeng, L.; Yang, T.; Xiong, P.; Chen, Q.; Zhang, J.; Wei, M.; Qian, Q. Co-construction of sulfur vacancies and carbon confinement in V5S8/CNFs to induce an ultra-stable performance for half/full sodium-ion and potassium-ion batteries. Nanoscale 2021, 13, 5033–5044. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Chen, X.; Kang, B.; Wang, H.-E.; Xiong, P.; Chen, Q.; Wei, M.; Li, N.; Qian, Q.; et al. Structural engineering of tin sulfides anchored on nitrogen/phosphorus dual-doped carbon nanofibres in sodium/potassium-ion batteries. Carbon 2022, 189, 46–56. [Google Scholar] [CrossRef]
- Xu, L.; Guo, W.; Zeng, L.; Xia, X.; Wang, Y.; Xiong, P.; Chen, Q.; Zhang, J.; Wei, M.; Qian, Q. V3Se4 embedded within N/P co-doped carbon fibers for sodium/potassium ion batteries. Chem. Eng. J. 2021, 419, 129607. [Google Scholar] [CrossRef]
Sample | Current Density (A g−1) | Cycle Number | Capacity Retention (m Ah g−1) |
---|---|---|---|
SbVO4/G | 0.1 | 450 | 401.6 |
B-SbSn/NCFs | 0.1 | 400 | 486.9 |
VN/CNF | 0.1 | 100 | 403 |
PbSe@CNTs | 0.1 | 100 | 458.9 |
FVO/rGO | 1 | 1500 | 137 |
VSe1.5/CNFs | 2 | 2000 | 265 |
WVO4/V3Se4/CNFs | 5 | 25,000 | 137 |
D-V5S8/CNFs | 5 | 17,000 | 190 |
V3Se4/NPCNFs | 10 | 13,000 | 240 |
SnSx-N/P-CNFs | 10 | 32,000 | 214 |
VN/CNF | 0.5 | 500 | 230.3 |
2 | 1000 | 154.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Zhang, H.; Yanghe, J.; Liu, S. VN Quantum Dots Anchored onto Carbon Nanofibers as a Superior Anode for Sodium Ion Storage. Materials 2024, 17, 6004. https://doi.org/10.3390/ma17236004
Wu X, Zhang H, Yanghe J, Liu S. VN Quantum Dots Anchored onto Carbon Nanofibers as a Superior Anode for Sodium Ion Storage. Materials. 2024; 17(23):6004. https://doi.org/10.3390/ma17236004
Chicago/Turabian StyleWu, Xiaoyu, Haimin Zhang, Jiachen Yanghe, and Sainan Liu. 2024. "VN Quantum Dots Anchored onto Carbon Nanofibers as a Superior Anode for Sodium Ion Storage" Materials 17, no. 23: 6004. https://doi.org/10.3390/ma17236004
APA StyleWu, X., Zhang, H., Yanghe, J., & Liu, S. (2024). VN Quantum Dots Anchored onto Carbon Nanofibers as a Superior Anode for Sodium Ion Storage. Materials, 17(23), 6004. https://doi.org/10.3390/ma17236004