Optimization of Laser Based-Powder Bed Fusion Parameters for Controlled Porosity in Titanium Alloy Components
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Envelope Porosity
3.2. Surface Characteristics
3.3. Surface Morphology
3.4. Pore Size and Surface Area
3.5. X-Ray Scattering
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.; De, A.; Zhang, W. Additive manufacturing of metallic components–Process, structure and properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Gunasekaran, J.; Sevvel, P.; John Solomon, I. Metallic materials fabrication by selective laser melting: A review. Mater. Today Proc. 2021, 37, 252–256. [Google Scholar] [CrossRef]
- Ali, M.H.; Sabyrov, N.; Shehab, E. Powder bed fusion–laser melting (PBF–LM) process: Latest review of materials, process parameter optimization, application, and up-to-date innovative technologies. Prog. Addit. Manuf. 2022, 7, 1395–1422. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Pramanik, A.; Basak, A.K.; Dong, Y.; Prakash, C.; Debnath, S.; Shankar, S.; Jawahir, I.S.; Dixit, S.; Buddhi, D. A critical review on additive manufacturing of Ti-6Al-4V alloy: Microstructure and mechanical properties. J. Mater. Res. Technol. 2022, 18, 4641–4661. [Google Scholar] [CrossRef]
- Chowdhury, S.; Yadaiah, N.; Prakash, C.; Ramakrishna, S.; Dixit, S.; Gupta, L.R.; Buddhi, D. Laser powder bed fusion: A state-of-the-art review of the technology, materials, properties & defects, and numerical modelling. J. Mater. Res. Technol. 2022, 20, 2109–2172. [Google Scholar] [CrossRef]
- Hassani, V. An investigation of additive manufacturing technologies for development of end-use components: A case study. Int. J. Press. Vessel. Pip. 2020, 187, 104171. [Google Scholar] [CrossRef]
- Zhu, J.-H.; Zhang, W.-H.; Xia, L. Topology Optimization in Aircraft and Aerospace Structures Design. Arch. Comput. Methods Eng. 2016, 23, 595–622. [Google Scholar] [CrossRef]
- Wu, Z.-Y.; Liu, Y.-J.; Bai, H.-W.; Wu, X.; Gao, Y.-H.; Liu, X.-C.; Wang, J.-C.; Wang, Q. Microstructure and mechanical behavior of rhombic dodecahedron-structured porous β-Ti composites fabricated via laser powder bed fusion. J. Mater. Res. Technol. 2024, 31, 298–310. [Google Scholar] [CrossRef]
- Gatto, M.L.; Cerqueni, G.; Groppo, R.; Santecchia, E.; Tognoli, E.; Defanti, S.; Mattioli-Belmonte, M.; Mengucci, P. Improved biomechanical behavior of 316L graded scaffolds for bone tissue regeneration produced by laser powder bed fusion. J. Mech. Behav. Biomed. Mater. 2023, 144, 105989. [Google Scholar] [CrossRef]
- Fleißner-Rieger, C.; Pfeifer, T.; Jörg, T.; Kremmer, T.; Brabetz, M.; Clemens, H.; Mayer, S. Selective Laser Melting of a Near-α Ti6242S Alloy for High-Performance Automotive Parts. Adv. Eng. Mater. 2021, 23, 2001194. [Google Scholar] [CrossRef]
- Ziółkowski, M.; Dyl, T. Possible Applications of Additive Manufacturing Technologies in Shipbuilding: A Review. Machines 2020, 8, 84. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, S.; Li, J.; Zhu, Y.; Peng, T.; Yang, H. Additive manufacturing of products with functional fluid channels: A review. Addit. Manuf. 2020, 36, 101490. [Google Scholar] [CrossRef]
- Constantin, L.; Wu, Z.; Li, N.; Fan, L.; Silvain, J.-F.; Lu, Y.F. Laser 3D printing of complex copper structures. Addit. Manuf. 2020, 35, 101268. [Google Scholar] [CrossRef]
- Fortunato, A.; Valli, G.; Liverani, E.; Ascari, A. Additive Manufacturing of WC-Co Cutting Tools for Gear Production. Lasers Manuf. Mater. Process. 2019, 6, 247–262. [Google Scholar] [CrossRef]
- Scalzo, F.; Totis, G.; Vaglio, E.; Sortino, M. Passive Chatter Suppression of Thin-Walled Parts by Means of High-Damping Lattice Structures Obtained from Selective Laser Melting. J. Manuf. Mater. Process. 2020, 4, 117. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Liu, Y.J.; Wu, X.; Liu, X.; Wang, J.C.; Wang, Q. Fatigue performance of beta titanium alloy topological porous structures fabricated by laser powder bed fusion. J. Mater. Res. Technol. 2024, 29, 4772–4780. [Google Scholar] [CrossRef]
- Balzarotti, R.; Ambrosetti, M.; Arnesano, M.; Anglani, A.; Groppi, G.; Tronconi, E. Periodic open cellular structures (POCS) as enhanced catalyst supports: Optimization of the coating procedure and analysis of mass transport. Appl. Catal. B Environ. 2021, 283, 119651. [Google Scholar] [CrossRef]
- Lawson, S.; Li, X.; Thakkar, H.; Rownaghi, A.A.; Rezaei, F. Recent Advances in 3D Printing of Structured Materials for Adsorption and Catalysis Applications. Chem. Rev. 2021, 121, 6246–6291. [Google Scholar] [CrossRef]
- Lind, A.; Vistad, Ø.; Sunding, M.F.; Andreassen, K.A.; Cavka, J.H.; Grande, C.A. Multi-purpose structured catalysts designed and manufactured by 3D printing. Mater. Des. 2020, 187, 108377. [Google Scholar] [CrossRef]
- Parra-Cabrera, C.; Achille, C.; Kuhn, S.; Ameloot, R. 3D printing in chemical engineering and catalytic technology: Structured catalysts, mixers and reactors. Chem. Soc. Rev. 2018, 47, 209–230. [Google Scholar] [CrossRef]
- Ferroni, C.; Bracconi, M.; Ambrosetti, M.; Maestri, M.; Groppi, G.; Tronconi, E. A Fundamental Investigation of Gas/Solid Heat and Mass Transfer in Structured Catalysts Based on Periodic Open Cellular Structures (POCS). Ind. Eng. Chem. Res. 2021, 60, 10522–10538. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Wei, M.; Dong, D.; Lan, L.; Yan, G.; Yan, X.; Wang, Y.; Yi, J.; Chang, C.; Liu, M. Applied research on methane steam reforming properties of porous structural catalyst fabricated by selective laser melting technology. Mater. Res. Express 2024, 11, 016521. [Google Scholar] [CrossRef]
- Rosseau, L.R.S.; Middelkoop, V.; Willemsen, H.A.M.; Roghair, I.; Van Sint Annaland, M. Review on Additive Manufacturing of Catalysts and Sorbents and the Potential for Process Intensification. Front. Chem. Eng. 2022, 4, 834547. [Google Scholar] [CrossRef]
- Lawson, S.; Baamran, K.; Newport, K.; Alghamadi, T.; Jacobs, G.; Rezaei, F.; Rownaghi, A.A. Integrated direct air capture and oxidative dehydrogenation of propane with CO2 at isothermal conditions. Appl. Catal. B Environ. 2022, 303, 120907. [Google Scholar] [CrossRef]
- Middelkoop, V.; Vamvakeros, A.; De Wit, D.; Jacques, S.D.M.; Danaci, S.; Jacquot, C.; De Vos, Y.; Matras, D.; Price, S.W.T.; Beale, A.M. 3D printed Ni/Al2O3 based catalysts for CO2 methanation-a comparative and operando XRD-CT study. J. CO2 Util. 2019, 33, 478–487. [Google Scholar] [CrossRef]
- Du, C.; Zhao, Y.; Jiang, J.; Wang, Q.; Wang, H.; Li, N.; Sun, J. Pore defects in Laser Powder Bed Fusion: Formation mechanism, control method, and perspectives. J. Alloys Compd. 2023, 944, 169215. [Google Scholar] [CrossRef]
- Shrestha, S.; Chou, K. Formation of keyhole and lack of fusion pores during the laser powder bed fusion process. Manuf. Lett. 2022, 32, 19–23. [Google Scholar] [CrossRef]
- Aliyu, A.A.A.; Puncreobutr, C.; Kuimalee, S.; Phetrattanarangsi, T.; Boonchuduang, T.; Taweekitikul, P.; Panwisawas, C.; Shinjo, J.; Lohwongwatana, B. Laser-inherent porosity defects in additively manufactured Ti–6Al–4V implant: Formation, distribution, and effect on fatigue performance. J. Mater. Res. Technol. 2024, 30, 5121–5132. [Google Scholar] [CrossRef]
- Sangid, M.D.; Ravi, P.; Prithivirajan, V.; Miller, N.A.; Kenesei, P.; Park, J.-S. ICME Approach to Determining Critical Pore Size of IN718 Produced by Selective Laser Melting. JOM 2020, 72, 465–474. [Google Scholar] [CrossRef]
- Reijonen, J.; Revuelta, A.; Metsä-Kortelainen, S.; Salminen, A. Effect of laser focal point position on porosity and melt pool geometry in laser powder bed fusion additive manufacturing. Addit. Manuf. 2024, 85, 104180. [Google Scholar] [CrossRef]
- Du Plessis, A. Effects of process parameters on porosity in laser powder bed fusion revealed by X-ray tomography. Addit. Manuf. 2019, 30, 100871. [Google Scholar] [CrossRef]
- Yeung, H.; Kim, F.H.; Donmez, M.A.; Neira, J. Keyhole pores reduction in laser powder bed fusion additive manufacturing of nickel alloy 625. Int. J. Mach. Tools Manuf. 2022, 183, 103957. [Google Scholar] [CrossRef]
- Vaglio, E.; Totis, G.; Lanzutti, A.; Fedrizzi, L.; Sortino, M. A novel thermo-geometrical model for accurate keyhole porosity prediction in Laser Powder-Bed Fusion. Prog. Addit. Manuf. 2024, 9, 247–261. [Google Scholar] [CrossRef]
- Qu, M.; Guo, Q.; Escano, L.I.; Clark, S.J.; Fezzaa, K.; Chen, L. Mitigating keyhole pore formation by nanoparticles during laser powder bed fusion additive manufacturing. Addit. Manuf. Lett. 2022, 3, 100068. [Google Scholar] [CrossRef]
- Abele, E.; Stoffregen, H.A.; Kniepkamp, M.; Lang, S.; Hampe, M. Selective laser melting for manufacturing of thin-walled porous elements. J. Mater. Process. Technol. 2015, 215, 114–122. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, R.; Liu, Y.; Zhang, L. Understanding melt pool characteristics in laser powder bed fusion: An overview of single- and multi-track melt pools for process optimization. Adv. Powder Mater. 2023, 2, 100137. [Google Scholar] [CrossRef]
- Maskery, I.; Aboulkhair, N.T.; Corfield, M.R.; Tuck, C.; Clare, A.T.; Leach, R.K.; Wildman, R.D.; Ashcroft, I.A.; Hague, R.J.M. Quantification and characterisation of porosity in selectively laser melted Al–Si10–Mg using X-ray computed tomography. Mater. Charact. 2016, 111, 193–204. [Google Scholar] [CrossRef]
- Read, N.; Wang, W.; Essa, K.; Attallah, M.M. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development. Mater. Des. (1980–2015) 2015, 65, 417–424. [Google Scholar] [CrossRef]
- Liu, S.; Shin, Y.C. Additive manufacturing of Ti6Al4V alloy: A review. Mater. Des. 2019, 164, 107552. [Google Scholar] [CrossRef]
- Rezaeifar, H.; Elbestawi, M. Porosity formation mitigation in laser powder bed fusion process using a control approach. Opt. Laser Technol. 2022, 147, 107611. [Google Scholar] [CrossRef]
- Bartolomeu, F.; Gasik, M.; Silva, F.S.; Miranda, G. Mechanical Properties of Ti6Al4V Fabricated by Laser Powder Bed Fusion: A Review Focused on the Processing and Microstructural Parameters Influence on the Final Properties. Metals 2022, 12, 986. [Google Scholar] [CrossRef]
- Lu, W.Q.; Liu, Y.J.; Wu, X.; Liu, X.C.; Wang, J.C. Corrosion and passivation behavior of Ti-6Al-4V surfaces treated with high-energy pulsed laser: A comparative study of cast and 3D-printed specimens in a NaCl solution. Surf. Coat. Technol. 2023, 470, 129849. [Google Scholar] [CrossRef]
- Li, S.; Zhu, H.; Li, Y.; Chen, Q.; Jiang, J.; Ma, B.; Shu, Z.; He, M.; Li, D.; Hao, L. Superior Lightness-Strength and biocompatibility of bio-inspired heterogeneous glass sponge Ti6Al4V lattice structure fabricated via laser powder bed fusion. Mater. Des. 2024, 244, 113209. [Google Scholar] [CrossRef]
- Mahmud, A.; Huynh, T.; Zhou, L.; Hyer, H.; Mehta, A.; Imholte, D.D.; Woolstenhulme, N.E.; Wachs, D.M.; Sohn, Y. Mechanical Behavior Assessment of Ti-6Al-4V ELI Alloy Produced by Laser Powder Bed Fusion. Metals 2021, 11, 1671. [Google Scholar] [CrossRef]
- Lanzutti, A.; Magnan, M.; Vaglio, E.; Totis, G.; Sortino, M.; Fedrizzi, L. Study of the Effect of L-PBF Technique Temporal Evolution on Microstructure, Surface Texture, and Fatigue Performance of Ti gr. 23 Alloy. Metals 2023, 13, 1247. [Google Scholar] [CrossRef]
- Vilar, R. 10.07-Laser Powder Deposition. In Comprehensive Materials Processing; Hashmi, S., Batalha, G.F., Van Tyne, C.J., Yilbas, B., Eds.; Elsevier: Oxford, UK, 2014; pp. 163–216. ISBN 978-0-08-096533-8. [Google Scholar]
- Vaglio, E.; De Monte, T.; Lanzutti, A.; Totis, G.; Sortino, M.; Fedrizzi, L. Single tracks data obtained by selective laser melting of Ti6Al4V with a small laser spot diameter. Data Brief 2020, 33, 106443. [Google Scholar] [CrossRef]
- Lorenzon, A.; Vaglio, E.; Casarsa, L.; Totis, G. Effects of different cross-sections of Body Centered Cubic cells on pressure drop and heat transfer of additively manufactured heat sinks. Int. J. Heat Mass Transf. 2024, 222, 125170. [Google Scholar] [CrossRef]
- UNI EN ISO 4287:2009; Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters. ISO: Geneva, Switzerland, 2009.
- Lorenzon, A.; Vaglio, E.; Casarsa, L.; Sortino, M. Experimental investigation of heat transfer and pressure losses across staggered Body Centered cubic arrays fabricated by Laser Powder Bed Fusion. Appl. Therm. Eng. 2023, 227, 120381. [Google Scholar] [CrossRef]
- Bardestani, R.; Patience, G.S.; Kaliaguine, S. Experimental methods in chemical engineering: Specific surface area and pore size distribution measurements—BET, BJH, and DFT. Can. J. Chem. Eng. 2019, 97, 2781–2791. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquérol, J.; Siemieniewska, T. Reporting Physisorption Data for Gas/Solids Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
Element | Ti | Al | V | Fe | C | H | O | N |
---|---|---|---|---|---|---|---|---|
Ti6Al4V (% weight) | Bal. | 5.96 | 4.13 | 0.22 | 0.01 | 0.001 | 0.1 | 0.01 |
Code | Laser Power [W] | Hatch Distance [mm] | Layer Thickness [mm] | Cuboid Samples | Lamellar Samples |
---|---|---|---|---|---|
Ti1 | 200 | 0.12 | 0.025 | ✓ | - |
Ti2 | 200 | 0.15 | 0.025 | ✓ | - |
Ti3 | 200 | 0.17 | 0.025 | ✓ | - |
Ti4 | 200 | 0.12 | 0.05 | ✓ | - |
Ti5 | 200 | 0.15 | 0.05 | ✓ | - |
Ti6 | 200 | 0.17 | 0.05 | ✓ | - |
Ti7 | 125 | 0.12 | 0.025 | ✓ | X |
Ti8 | 125 | 0.15 | 0.025 | ✓ | X |
Ti9 | 125 | 0.17 | 0.025 | ✓ | ✓ |
Ti10 | 125 | 0.12 | 0.05 | ✓ | ✓ |
Ti11 | 125 | 0.15 | 0.05 | ✓ | ✓ |
Ti12 | 125 | 0.17 | 0.05 | ✓ | ✓ |
Ti13 | 50 | 0.12 | 0.025 | ✓ | X |
Ti14 | 50 | 0.15 | 0.025 | ✓ * | - |
Ti15 | 50 | 0.17 | 0.025 | X | - |
Ti16 | 50 | 0.12 | 0.05 | X | - |
Ti17 | 50 | 0.15 | 0.05 | X | - |
Ti18 | 50 | 0.17 | 0.05 | X | - |
Ref. | 225 | 0.09 | 0.025 | - | - |
Sample | Cuboid | Lamellar | ||
---|---|---|---|---|
Surface Area (m2/kg) | Pore Volume (cm3/kg) | Surface Area (m2/kg) | Pore Volume (cm3/kg) | |
Ti7 | 16 | 0.5 | 106 | 4 |
Ti8 | 17 | 0.5 | 151 | 2 |
Ti9 | 25 | 0.5 | 276 | 5 |
Ti10 | 22 | 0.5 | 88 | 3 |
Ti11 | 34 | 0.6 | 115 | 2 |
Ti12 | 36 | 0.6 | 147 | 4 |
Ti13 | 47 | 0.8 | 210 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaglio, E.; Scalzo, F.; Sortino, M.; Totis, G.; Cremonese, R.; Boccia, M.; Danielis, M. Optimization of Laser Based-Powder Bed Fusion Parameters for Controlled Porosity in Titanium Alloy Components. Materials 2024, 17, 5572. https://doi.org/10.3390/ma17225572
Vaglio E, Scalzo F, Sortino M, Totis G, Cremonese R, Boccia M, Danielis M. Optimization of Laser Based-Powder Bed Fusion Parameters for Controlled Porosity in Titanium Alloy Components. Materials. 2024; 17(22):5572. https://doi.org/10.3390/ma17225572
Chicago/Turabian StyleVaglio, Emanuele, Federico Scalzo, Marco Sortino, Giovanni Totis, Roberto Cremonese, Massimiliano Boccia, and Maila Danielis. 2024. "Optimization of Laser Based-Powder Bed Fusion Parameters for Controlled Porosity in Titanium Alloy Components" Materials 17, no. 22: 5572. https://doi.org/10.3390/ma17225572
APA StyleVaglio, E., Scalzo, F., Sortino, M., Totis, G., Cremonese, R., Boccia, M., & Danielis, M. (2024). Optimization of Laser Based-Powder Bed Fusion Parameters for Controlled Porosity in Titanium Alloy Components. Materials, 17(22), 5572. https://doi.org/10.3390/ma17225572