Enhancing the Mechanical Properties of Co-Cr Dental Alloys Fabricated by Laser Powder Bed Fusion: Evaluation of Quenching and Annealing as Heat Treatment Methods
Abstract
1. Introduction
2. Materials and Methods
2.1. The Sample Preparation
2.2. Heat Treatment Parameters
2.3. Tensile Strength
2.4. Hardness
2.5. Sample Microstructure Characterization
2.6. X-ray Diffraction Analysis
2.7. Statistical Analysis
3. Results
3.1. Tensile Strength
3.2. Hardness
3.3. Sample Microstructure Characterization
4. Discussion
5. Conclusions
- The microstructures and mechanical properties of Co-Cr dental alloys are dependent on the manufacturing method.
- The microstructure, distribution of precipitates, face-centered cubic (FCC) phase, and hexagonal close-packed (HCP) phase determined the final properties of the Co-Cr samples.
- The mechanical properties (flexural strength and hardness) of the laser powder bed fusion (L-PBF) specimens were greater than those of the samples obtained by the lost wax casting method.
- Annealing after quenching results in a more homogenous microstructure with a fine distribution of precipitates inside grains and on their borders.
- The L-PBF specimens mainly consisted of the FCC phase. The highest HCP values (average of approximately 16%) were obtained for samples treated with additional heat treatment after quenching.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Fung, L.; Brisebois, P. Implementing Digital Dentistry into Your Esthetic Dental Practice. Dent. Clin. N. Am. 2020, 64, 645–657. [Google Scholar] [CrossRef] [PubMed]
- Papadiochou, S.; Pissiotis, A.L. Marginal adaptation and CAD-CAM technology: A systematic review of restorative material and fabrication techniques. J. Prosthet. Dent. 2018, 119, 545–551. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M. 3D scanning applications in medical field: A literature-based review. Clin. Epidemiol. Glob. Health 2019, 7, 199–210. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Kumar, L. Current status and applications of 3D scanning in dentistry. Clin. Epidemiol. Glob. Health 2019, 7, 228–233. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A. Current status and applications of additive manufacturing in dentistry: A literature-based review. J. Oral Biol. Craniofacial Res. 2019, 9, 179–185. [Google Scholar] [CrossRef]
- Strub, J.R.; Rekow, E.D.; Witkowski, S. Computer-aided design and fabrication of dental restorations: Current systems and future possibilities. J. Am. Dent. Assoc. 2006, 137, 1289–1296. [Google Scholar] [CrossRef] [PubMed]
- Liparoti, S.; Sofia, D.; Romano, A.; Marra, F.; Pantani, R. Fused filament deposition of pla: The role of interlayer adhesion in the mechanical performances. Polymers 2021, 13, 399. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Revilla-León, M.; Özcan, M. Additive Manufacturing Technologies Used for 3D Metal Printing in Dentistry. Curr. Oral Health Rep. 2017, 4, 201–208. [Google Scholar] [CrossRef]
- Dikova, T. Properties of Co-Cr Dental Alloys Fabricated Using Additive Technologies. In Biomaterials in Regenerative Medicine; Dobrzański, L.A., Ed.; IntechOpen: Rijeka, Croatia, 2018; pp. 141–159. [Google Scholar]
- Wang, J.; Ren, J.; Liu, W.; Wu, X.; Gao, M.; Bai, P. Effect of Selective Laser Melting Process Parameters on Microstructure and Properties of Co-Cr Alloy. Materials 2018, 11, 1546. [Google Scholar] [CrossRef]
- Tonelli, L.; Fortunato, A.; Ceschini, L. CoCr alloy processed by Selective Laser Melting (SLM): Effect of Laser Energy Density on microstructure, surface morphology, and hardness. J. Manuf. Process. 2020, 52, 106–119. [Google Scholar] [CrossRef]
- Sun, S.H.; Koizumi, Y.; Kurosu, S.; Li, Y.P.; Matsumoto, H.; Chiba, A. Build direction dependence of microstructure and high-temperature tensile property of Co-Cr-Mo alloy fabricated by electron beam melting. Acta Mater. 2014, 64, 154–168. [Google Scholar] [CrossRef]
- Zhou, X.; Li, K.; Zhang, D.; Liu, X.; Ma, J.; Liu, W.; Shen, Z. Textures formed in a CoCrMo alloy by selective laser melting. J. Alloys Compd. J. 2015, 631, 153–164. [Google Scholar] [CrossRef]
- Gu, D.; Shi, Q.; Lin, K.; Xi, L. Microstructure and performance evolution and underlying thermal mechanisms of Ni-based parts fabricated by selective laser melting. Addit. Manuf. 2018, 22, 265–278. [Google Scholar] [CrossRef]
- Yap, C.Y.; Chua, C.K.; Dong, Z.L.; Liu, Z.H.; Zhang, D.Q.; Loh, L.E.; Sing, S.L. Review of selective laser melting: Materials and applications. Appl. Phys. Rev. 2015, 2, 041101. [Google Scholar] [CrossRef]
- Béreš, M.; Silva, C.C.; Sarvezuk, P.W.C.; Wu, L.; Jardini, A.L.; Feitosa, A.L.M.; Žilková, J.; de Abreu, H.F.G.; Filho, R.M. Mechanical and phase transformation behaviour of biomedical Co-Cr-Mo alloy fabricated by direct metal laser sintering. Mater. Sci. Eng. A 2018, 714, 36–42. [Google Scholar] [CrossRef]
- Takaichi, A.; Kajima, Y.; Kittikundecha, N.; Linn, H.; Htoot, H.; Cho, W.; Hanawa, T.; Yoneyama, T.; Wakabayashi, N. Effect of heat treatment on the anisotropic microstructural and mechanical properties of Co–Cr–Mo alloys produced by selective laser melting. J. Mech. Behav. Biomed. Mater. 2020, 102, 103496. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, S.; Gan, Y.; Li, J.; Zhao, C.; Zhuo, D.; Lin, J. Investigation on the microstructure, mechanical property and corrosion behavior of the selective laser melted CoCrW alloy for dental application. Mater. Sci. Eng. C 2015, 49, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Lin, H.; Wu, Y.; Bai, W. Effect of two heat treatments on mechanical properties of selective-laser-melted Co-Cr metal-ceramic alloys for application in thin removable partial dentures. J. Prosthet. Dent. 2018, 119, e1–e1028. [Google Scholar] [CrossRef]
- Seki, E.; Kajima, Y.; Takaichi, A.; Kittikundecha, N.; Htoot, H.; Cho, W.; Linn, H.; Doi, H.; Hanawa, T.; Wakabayashi, N. Effect of heat treatment on the microstructure and fatigue strength of CoCrMo alloys fabricated by selective laser melting. Mater. Lett. 2019, 245, 53–56. [Google Scholar] [CrossRef]
- Konieczny, B.; Szczesio-Wlodarczyk, A.; Sokolowski, J.; Bociong, K. Challenges of Co–Cr Alloy Additive Manufacturing Methods in Dentistry—The Current State of Knowledge (Systematic Review). Materials 2020, 13, 3524. [Google Scholar] [CrossRef] [PubMed]
- Kajima, Y.; Takaichi, A.; Kittikundecha, N.; Nakamoto, T.; Kimura, T.; Nomura, N.; Kawasaki, A.; Hanawa, T.; Takahash, H.; Wakabayashi, N. Effect of heat-treatment temperature on microstructures and mechanical properties of Co– Cr–Mo alloys fabricated by selective laser melting. Mater. Sci. Eng. A 2018, 726, 21–31. [Google Scholar] [CrossRef]
- Viderščak, D.; Schauperl, Z.; Šolić, S.; Ćatić, A.; Godec, M.; Kocijan, A.; Paulin, I.; Donik, Č. Additively manufactured commercial Co-Cr dental alloys: Comparison of microstructure and mechanical properties. Materials 2021, 14, 7350. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.H.; Lee, D.H.; Hanawa, T.; Kwon, T.Y. Comparison of microstructures and mechanical properties of 3 cobalt-chromium alloys fabricated with soft metal milling technology. J. Prosthet. Dent. 2022, 127, 489–496. [Google Scholar] [CrossRef] [PubMed]
- López, H.F.; Saldivar-Garcia, A.J. Martensitic transformation in a cast Co-Cr-Mo-C alloy. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2008, 39, 8–18. [Google Scholar] [CrossRef]
- Boyer, H.E.; Archambault, P.; Moreaux, F.; Kobasko, N.I. Techniques of Quenching. In Theory and Technology of Quenching; Springer: New York, NY, USA, 1992; pp. 341–389. [Google Scholar]
- Turrubiates-Estrada, R.; Salinas-Rodriguez, A.; Lopez, H.F. FCC to HCP transformation kinetics in a Co-27Cr-5Mo-0.23C alloy. J. Mater. Sci. 2011, 46, 254–262. [Google Scholar] [CrossRef]
- Sedlaček, M.; Zupančič, K.; Šetina Batič, B.; Kosec, B.; Zorc, M.; Nagode, A. Influence of Precipitation Hardening on the Mechanical Properties of Co-Cr-Mo and Co-Cr-W-Mo Dental Alloys. Metals 2023, 13, 637. [Google Scholar] [CrossRef]
- Sing, S.L.; Huang, S.; Yeong, W.Y. Effect of solution heat treatment on microstructure and mechanical properties of laser powder bed fusion produced cobalt-28chromium-6molybdenum. Mater. Sci. Eng. A 2020, 769, 138511. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, S.; Gan, Y.; Zhang, S.; Guo, S.; Lin, J.; Lin, J. Microstructure, mechanical property and metal release of As-SLM CoCrW alloy under different solution treatment conditions. J. Mech. Behav. Biomed. Mater. 2016, 55, 179–190. [Google Scholar] [CrossRef]
- Khaimanee, P.; Choungthong, P.; Uthaisangsuk, V. Effects of Isothermal Aging on Microstructure Evolution, Hardness and Wear Properties of Wrought Co-Cr-Mo Alloy. J. Mater. Eng. Perform. 2017, 26, 955–968. [Google Scholar] [CrossRef]
- Chung, F.H. Quantitative interpretation of X-ray diffraction patterns of mixtures. I. Matrix-flushing method for quantitative multicomponent analysis. J. Appl. Crystallogr. 1974, 7, 519–525. [Google Scholar] [CrossRef]
- Donkor, B.T.; Song, J.; Fu, Y.; Kattoura, M.; Mannava, S.R.; Steiner, M.A.; Vasudevan, V.K. Accelerated γ-face-centered cubic to ε-hexagonal close packed massive transformation in a laser powder bed fusion additively manufactured Co-29Cr-5Mo alloy. Scr. Mater. 2020, 179, 65–69. [Google Scholar] [CrossRef]
- Htoot, H.; Cho, W.; Takaichi, A.; Kajima, Y.; Htat, H.L.; Kittikundecha, N.; Hanawa, T.; Wakabayashi, N. Effect of Post-Heat Treatment Cooling Conditions on Microstructures and Fatigue Properties of Cobalt Chromium Molybdenum Alloy Fabricated through Selective Laser Melting. Metals 2021, 11, 1005. [Google Scholar] [CrossRef]
- Kaita, W.; Hagihara, K.; Augusto, L.; Nakano, T. Plastic deformation mechanisms of biomedical Co–Cr–Mo alloy single crystals with hexagonal close-packed structure. Scr. Mater. 2018, 142, 111–115. [Google Scholar] [CrossRef]
- Lashgari, H.R.; Zangeneh, S.; Hasanabadi, F.; Saghafi, M. Microstructural evolution during isothermal aging and strain-induced transformation followed by isothermal aging in Co-Cr-Mo-C alloy: A comparative study. Mater. Sci. Eng. A 2010, 527, 4082–4091. [Google Scholar] [CrossRef]
- Ramirez-Ledesma, A.L.; Lopez-Molina, E.; Lopez, H.F.; Juarez-Islas, J.A. Athermal ε-martensite transformation in a Co-20Cr alloy: Effect of rapid solidification on plate nucleation. Acta Mater. 2016, 111, 138–147. [Google Scholar] [CrossRef]
- Stamenković, D.; Popović, M.; Rudolf, R.; Zrilić, M.; Raić, K.; Đuričić, K.O.; Stamenković, D. Comparative Study of the Microstructure and Properties of Cast-Fabricated and 3D-Printed Laser-Sintered Co–Cr Alloys for Removable Partial Denture Frameworks. Materials 2023, 16, 3267. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, N.; Yan, J.; Zeng, Q. Comparative analysis of the microstructures and mechanical properties of Co-Cr dental alloys fabricated by different methods. J. Prosthet. Dent. 2018, 120, 617–623. [Google Scholar] [CrossRef]
- Kassapidou, M.; Stenport, V.F.; Johansson, C.B.; Syverud, M.; Hammarström Johansson, P.; Börjesson, J.; Hjalmarsson, L. Cobalt chromium alloys in fixed prosthodontics: Investigations of mechanical properties and microstructure. J. Prosthet. Dent. 2023, 130, e1–e255. [Google Scholar] [CrossRef]
- Alloys, D.; Cad, T.; Kim, K.; Kwon, T. Microstructures and Mechanical Properties of Co-Cr Dental Alloys Fabricated by Three CAD/CAM-Based Processing Techniques. Materials 2016, 9, 596. [Google Scholar] [CrossRef]
- Koutsoukis, T.; Zinelis, S.; Eliades, G.; Al-wazzan, K.; Al Rifaiy, M.; Jabbari, Y.S. Al Selective Laser Melting Technique of Co-Cr Dental Alloys: A Review of Structure and Properties and Comparative Analysis with Other Available Techniques. J. Prosthodont. 2015, 24, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Al Jabbari, Y.S.; Koutsoukis, T.; Barmpagadaki, X.; Zinelis, S.; Al Jabbari, Y.S.; Koutsoukis, T.; Barmpagadaki, X.; Zinelis, S. Metallurgical and interfacial characterization of PFM Co–Cr dental alloys fabricated via casting, milling or selective laser melting. Dent. Mater. 2014, 30, e79–e88. [Google Scholar] [CrossRef] [PubMed]
- Ghadhban, A.H.; Hasan, I.H. Hardness and Surface Roughness of Cobalt-Chromium Alloy Produced by Selective Laser Melting and Casting Techniques (An in vitro study). J. Res. Med. Dent. Sci. 2022, 10, 203–207. [Google Scholar]
- Lapcevic, A.R.; Jevremovic, D.P.; Puskar, T.M.; Williams, R.J.; Eggbeer, D. Comparative analysis of structure and hardness of cast and direct metal laser sintering produced Co-Cr alloys used for dental devices. Rapid Prototyp. J. 2016, 22, 144–151. [Google Scholar] [CrossRef]
- Han, X.; Sawada, T.; Schille, C.; Schweizer, E.; Scheideler, L.; Geis-Gerstorfer, J.; Rupp, F.; Spintzyk, S. Comparative analysis of mechanical properties and metal-ceramic bond strength of Co-Cr dental alloy fabricated by different manufacturing processes. Materials 2018, 11, 1801. [Google Scholar] [CrossRef]
- Yu, J.-M.; Kang, S.-Y.; Lee, J.-S.; Jeong, H.-S.; Lee, S.-Y. Mechanical Properties of Dental Alloys According to Manufacturing Process. Materials 2021, 14, 3367. [Google Scholar] [CrossRef]
- Ko, K.H.; Kang, H.G.; Huh, Y.H.; Park, C.J.; Cho, L.R. Effects of heat treatment on the microstructure, residual stress, and mechanical properties of Co-Cr alloy fabricated by selective laser melting. J. Mech. Behav. Biomed. Mater. 2022, 126, 105051. [Google Scholar] [CrossRef]
- Yamanaka, K.; Mori, M.; Chiba, A. Assessment of precipitation behavior in dental castings of a Co-Cr-Mo alloy. J. Mech. Behav. Biomed. Mater. 2015, 50, 268–276. [Google Scholar] [CrossRef]
- Maksimovic, V.M.; Stoiljkovic, M.M.; Čairovic, A.D. Some consequences of repeated casting of Co-Cr dental alloy. J. Serbian Chem. Soc. 2016, 81, 1307–1319. [Google Scholar] [CrossRef]
- Myszka, D.; Skrodzki, M. Comparison of Dental Prostheses Cast and Sintered by SLM from Co-Cr-Mo-W Alloy. Arch. Foundry Eng. 2016, 16, 201–207. [Google Scholar] [CrossRef]
- Fu, W.; Liu, S.; Jiao, J.; Xie, Z.; Huang, X.; Lu, Y.; Liu, H.; Hu, S.; Zuo, E.; Kou, N.; et al. Wear Resistance and Biocompatibility of Co-Cr Dental Alloys Fabricated with CAST and SLM Techniques. Materials 2022, 15, 3263. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.F.; Wang, J.C.; Hsu, C.Y.; Peng, P.W. Microstructure, mechanical properties, and retentive forces of cobalt-chromium removable partial denture frameworks fabricated by selective laser melting followed by heat treatment. J. Prosthet. Dent. 2022, 127, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Chimmat, M.; Srinivasan, D. Understanding the Residual Stress in DMLS CoCrMo and SS316L using X-ray diffraction. Procedia Struct. Integr. 2019, 14, 746–757. [Google Scholar] [CrossRef]
- Okazaki, Y.; Ishino, A.; Higuchi, S. Chemical, physical, and mechanical properties and microstructures of laser-sintered Co-25Cr-5Mo-5W (SP2) and W-Free Co-28Cr-6Mo alloys for dental applications. Materials 2019, 12, 4039. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Zhou, Y.; Sun, Q.; Li, N.; Yan, J.; Li, H.; Liu, W.; Huang, C. Microstructures and Mechanical Properties of Dental Co-Cr-Mo-W Alloys Fabricated by Selective Laser Melting at Different Subsequent Heat Treatment Temperatures. Metall. Mater. Trans. A 2020, 51A, 3205–3214. [Google Scholar] [CrossRef]
- Zangeneh, S.; Erisir, E.; Abbasi, M.; Ramazani, A. Evaluation of the aging effect on the microstructure of Co-28Cr-6Mo-0.3C alloy: Experimental characterization and computational thermodynamics. Metals 2019, 9, 581. [Google Scholar] [CrossRef]
- Roudnicka, M.; Bigas, J.; Molnarova, O.; Palousek, D.; Vojtech, D. Different response of cast and 3D-printed Co-Cr-Mo alloy to heat treatment: A thorough microstructure characterization. Metals 2021, 11, 687. [Google Scholar] [CrossRef]
- Isik, M.; Niinomi, M.; Cho, K.; Nakai, M.; Liu, H.; Yilmazer, H.; Horita, Z.; Sato, S.; Narushima, T. Microstructural evolution and mechanical properties of biomedical Co-Cr-Mo alloy subjected to high-pressure torsion. J. Mech. Behav. Biomed. Mater. 2016, 59, 226–235. [Google Scholar] [CrossRef]
- Motra, H.B.; Hildebrand, J.; Dimmig-Osburg, A. Assessment of strain measurement techniques to characterise mechanical properties of structural steel. Eng. Sci. Technol. Int. J. 2014, 17, 260–269. [Google Scholar] [CrossRef]
- Hegele, P.; Von Kobylinski, J.; Hitzler, L.; Krempaszky, C.; Werner, E. In-situ XRD study of phase transformation kinetics in a Co-Cr-W-alloy manufactured by laser powder-bed fusion. Crystals 2021, 11, 176. [Google Scholar] [CrossRef]
- von Kobylinski, J.; Hitzler, L.; Lawitzki, R.; Krempaszky, C.; Öchsner, A.; Werner, E. Relationship between Phase Fractions and Mechanical Properties in Heat-Treated Laser Powder-Bed Fused Co-Based Dental Alloys. Isr. J. Chem. 2020, 60, 607–614. [Google Scholar] [CrossRef]
- Sahami-Nejad, M.; Lashgari, H.R.; Zangeneh, S.; Kong, C. Determination of residual stress on TIG-treated surface via nanoindentation technique in Co-Cr-Mo-C alloy. Surf. Coat. Technol. 2019, 380, 125020. [Google Scholar] [CrossRef]
- Lambrou, I.; Kaldellis, A.; Stergiou, V.; Tsakiridis, P.E. Characterisation of heat-treated cobalt—Chromium alloy fabricated by selective laser melting. Mater. Sci. Technol. 2022, 38, 1510–1518. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, Q.; Dong, X.; Li, N.; Shen, Z.J.; Zhong, Y.; Eriksson, M.; Yan, J.; Xu, S.; Xin, C. Microstructure evolution and mechanical properties improvement of selective laser melted Co-Cr biomedical alloys during subsequent heat treatments. J. Alloys Compd. 2020, 840, 155664. [Google Scholar] [CrossRef]
- Vander Sande, J.B.; Coke, J.R.; Wulff, J. A transmission electron microscopy study of the mechanisms of strengthening in heat-treated Co-Cr-Mo-C alloys. Metall. Trans. A 1976, 7, 389–397. [Google Scholar] [CrossRef]
Materials | Production Method | Manufacturer | Composition |
---|---|---|---|
Starbond COS powder | laser powder bed fusion | Scheftner, Mainz, Germany | Co 59%, Cr 25%, W 9.5%, Mo 3.5%, Si 1%, C, Fe, Mn, N < 1% |
Starbond COS ingots | casting | Scheftner, Mainz, Germany | Co 59%, Cr 25%, W 9.5%, Mo 3.5%, Si 1%, C, Fe, Mn, N < 1% |
MoguCera C ingots | casting | Scheftner, Mainz, Germany | Co 65%, Cr 28%, Mo 5%, Mn 1%, C, Si < 1% |
Production Method | Group | Heat Treatment Conditions | Assumption |
---|---|---|---|
Casting | Casting Starbond | none | For casting samples, there was no post-production heat treatment after cooling at room temperature; control. |
Casting MoguCera | none | ||
Laser powder bed fusion | Furnace cooling | Heat treatment at 1150 °C for one hour, cooling slowly to room temperature in a furnace | The heat treatment to homogenize the alloy microstructure; control. |
Water quenching | Heat treatment at 1150 °C, one hour, and water quenching | The martensitic HCP phase in Co-Cr-Mo-C alloys and small precipitates occurrence to improve the mechanical strength of the alloy. | |
Oil quenching | Heat treatment at 1150 °C, one hour, and oil quenching (OH-70, ORLEN OIL, Elbląg, Poland) | The martensitic HCP phase in Co-Cr-Mo-C alloys and small precipitates occurrence to improve the mechanical strength of the alloy. | |
Water quenching + reheating | Heat treatment at 1150 °C for one hour and water quenching; after that, the samples were reheated for 1 h at 750 °C | The quenching is followed by a reheating to improve the creep strength of the alloy. | |
Oil quenching + reheating | Heat treatment at 1150 °C for one hour and oil quenching; after that, the samples were reheated for 1 h at 750 °C | The quenching is followed by a reheating to improve the creep strength of the alloy. |
Group | TS [MPa] | E [GPa] | 0.2 YP [MPa] |
---|---|---|---|
Casting Starbond | 707 (58) a,b,c | 100 (13) | 525 (11) a,b,c |
Casting MoguCera | 791 (67) d,e | 114 (7) a,d | 599 (52) d,e,f |
Furnace cooling | 1366 (37) a,d | 90 (3) a,b,c | 909 (25) a,d |
Water quenching | 1267 (41) | 49 (8) d,e,f | 706 (40) |
Oil quenching | 1298 (52) | 93 (9) g | 787 (54) |
Water quenching + reheating | 1389 (38) b,e | 116 (13) b,e | 882 (140) b.e |
Oil quenching + reheating | 1368 (142) c | 127 (17) c,f,g | 876 (106) c,f |
Group | HV [MPa] |
---|---|
Casting Starbond | 330 (41) a,b,c |
Casting MoguCera | 345 (39) d,e,f |
Furnace cooling | 526 (28) a,d |
Water quenching | 472 (21) g |
Oil quenching | 475 (37) |
Water quenching + reheating | 542 (11) b,e,g |
Oil quenching + reheating | 535 (18) c,f |
Sample | Matrix | Large Precipitates | Smaller Precipitates |
---|---|---|---|
Starbond Cast | Co 61% | Co 44% | Co 45% |
Cr 15% | Cr 29% | Cr 22% | |
W 9% | W 17% | W 18% | |
Mo 3% | Mo 9% | Mo 13% | |
MoguCera Cast | Co 65% | Co 49% | Co 48% |
Cr 28% | Cr 28% | Cr 28% | |
Mo 4.8% | Mo 16% | Mo 16% | |
Furnace cooling | Co 61% | Co 53% | Co 59% |
Cr 26% | Cr 26% | Cr 26% | |
W 9.5% | W 14% | W 10% | |
Mo 4% | Mo 6% | Mo 4% | |
Water quenching | Co 62% | Co 46% | Co 42% |
Cr 27% | Cr 26% | Cr 28% | |
W 7% | W 19% | W 19% | |
Mo 4% | Mo 9% | Mo 11% | |
Oil quenching | Co 62% | Co 44% | Co 42% |
Cr 27% | Cr 25% | Cr 19% | |
W 8% | W 21% | W 28% | |
Mo 4% | Mo 10% | Mo 11% | |
Water quenching + reheating | Co 61% | Co 42% | Co 53% |
Cr 27% | Cr 19% | Cr 24% | |
W 8% | W 28% | W 16% | |
Mo 3% | Mo 10% | Mo 6% | |
Oil quenching + reheating | Co 55% | Co 43% | Co 47% |
Cr 24% | Cr 22% | Cr 21% | |
W 16% | W 26% | W 23% | |
Mo 5% | Mo 9% | Mo 8% |
Sample | Chung | Rietveld | Sage-Guillaud |
---|---|---|---|
Starbond Cast | 5 | 6.7 | 9.4 |
MoguCera Cast | 86 | 82.0 | 86.0 |
Furnace cooling | 1 | 0.3 | 0.5 |
Water quenching | 0 | 0.0 | 0.0 |
Oil quenching | 1 | 0.5 | 0.6 |
Water quenching + reheating | 26 | 11.3 | 15.4 |
Oil quenching + reheating | 20 | 7.8 | 11.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konieczny, B.; Szczesio-Wlodarczyk, A.; Andrearczyk, A.; Januszewicz, B.; Lipa, S.; Zieliński, R.; Sokolowski, J. Enhancing the Mechanical Properties of Co-Cr Dental Alloys Fabricated by Laser Powder Bed Fusion: Evaluation of Quenching and Annealing as Heat Treatment Methods. Materials 2024, 17, 5313. https://doi.org/10.3390/ma17215313
Konieczny B, Szczesio-Wlodarczyk A, Andrearczyk A, Januszewicz B, Lipa S, Zieliński R, Sokolowski J. Enhancing the Mechanical Properties of Co-Cr Dental Alloys Fabricated by Laser Powder Bed Fusion: Evaluation of Quenching and Annealing as Heat Treatment Methods. Materials. 2024; 17(21):5313. https://doi.org/10.3390/ma17215313
Chicago/Turabian StyleKonieczny, Bartlomiej, Agata Szczesio-Wlodarczyk, Artur Andrearczyk, Bartlomiej Januszewicz, Sebastian Lipa, Rafał Zieliński, and Jerzy Sokolowski. 2024. "Enhancing the Mechanical Properties of Co-Cr Dental Alloys Fabricated by Laser Powder Bed Fusion: Evaluation of Quenching and Annealing as Heat Treatment Methods" Materials 17, no. 21: 5313. https://doi.org/10.3390/ma17215313
APA StyleKonieczny, B., Szczesio-Wlodarczyk, A., Andrearczyk, A., Januszewicz, B., Lipa, S., Zieliński, R., & Sokolowski, J. (2024). Enhancing the Mechanical Properties of Co-Cr Dental Alloys Fabricated by Laser Powder Bed Fusion: Evaluation of Quenching and Annealing as Heat Treatment Methods. Materials, 17(21), 5313. https://doi.org/10.3390/ma17215313