Deep Red Photoluminescence from Cr3+ in Fluorine-Doped Lithium Aluminate Host Material
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Compositions and Crystal Structure
3.2. Morphologies
3.3. Photoluminescence Properties
3.4. Local Environments around Cr3+
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Uheda, K.; Hirosaki, N.; Yamamoto, Y.; Naito, A.; Nakajima, T.; Yamamoto, H. Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes. Electrochem. Solid-State Lett. 2006, 9, H22–H25. [Google Scholar] [CrossRef]
- Piao, X.; Machida, K.; Horikawa, T.; Hanzawa, H.; Shimomura, Y.; Kijima, N. Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties. Chem. Mater. 2007, 19, 4592–4599. [Google Scholar] [CrossRef]
- Kim, H.S.; Horikawa, T.; Hanzawa, H.; Machida, K. Luminescence properties of CaAlSiN3:Eu2+ mixed nitrides prepared by carbothermal process. J. Phys. Conf. Ser. 2012, 379, 012016. [Google Scholar] [CrossRef]
- Daicho, H.; Shinomiya, Y.; Enomoto, K.; Nakano, A.; Sawa, H.; Matsuishi, S.; Hosono, H. A novel red-emitting K2Ca(PO4)F:Eu2+ phosphor with a large Stokes shift. Chem. Commun. 2018, 54, 884–887. [Google Scholar] [CrossRef] [PubMed]
- Kamimura, M. Recent progress of near-infrared fluorescence in vivo bioimaging in the second and third biological window. Anal. Sci. 2021, 37, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Gil, H.M.; Price, T.W.; Chelani, K.; Bouillard, J.-S.G.; Calaminus, S.D.J.; Stasiuk, G.J. NIR-quantum dots in biomedical imaging and their future. iScience 2021, 24, 102189. [Google Scholar] [CrossRef] [PubMed]
- Piwoński, H.; Nozue, S.; Habuchi, S. The pursuit of shortwave infrared-emitting nanoparticles with bright fluorescence through molecular design and excited-state engineering of molecular aggregates. ACS Nanosci. Au 2022, 2, 253–283. [Google Scholar] [CrossRef] [PubMed]
- Congiu, M.; Alamiry, M.; Moudam, O.; Ciorba, S.; Richardson, P.R.; Maron, L.; Jones, A.C.; Richards, B.S.; Robertson, N. Preparation and photophysical studies of [Ln(hfac)3DPEPO], Ln = Eu, Tb, Yb, Nd, Gd; interpretation of total photoluminescence quantum yields. Dalton Trans. 2013, 42, 13537–13545. [Google Scholar] [CrossRef]
- Tamatani, M. Luminescence centers of transition metal ions. In Phosphor Handbook; Shionoya, S., Yen, W.M., Eds.; CRC Press: Boca Raton, FL, USA, 1999; pp. 153–176. [Google Scholar]
- Sijbom, H.F.; Verstraete, R.; Joos, J.J.; Poelman, D.; Smet, P.F. K2SiF6:Mn4+ as a red phosphor for displays and warm-white LEDs: A review of properties and perspectives. Opt. Mater. Exp. 2017, 7, 3332–3365. [Google Scholar] [CrossRef]
- Sankarasubramanian, K.; Devakumar, B.; Annadurai, G.; Sun, L.; Zeng, Y.-J.; Huang, X. Novel SrLaAlO4:Mn4+ deep-red emitting phosphors with excellent responsiveness to phytochrome PFR for plant cultivation LEDs: Synthesis, photoluminescence properties, and thermal stability. RSC Adv. 2018, 8, 30223–30229. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, S.; Devakumar, B.; Li, B.; Sun, L.; Liang, J.; Chen, D.; Huang, X. Novel far-red-emitting SrGdAlO4:Mn4+ phosphors with excellent responsiveness to phytochrome PFR for plant growth lighting. RSC Adv. 2018, 8, 39307–39313. [Google Scholar] [CrossRef] [PubMed]
- Luchechko, A.; Vasyltsiv, V.; Zhydachevskiyy, Y.; Kushlyk, M.; Ubizskii, S.; Suchocki, A. Luminescence spectroscopy of Cr3+ ions in bulk single crystalline β-Ga2O3. J. Phys. D Appl. Phys. 2020, 53, 354001. [Google Scholar] [CrossRef]
- Wood, D.L.; Imbusch, G.F.; Macfarlane, R.M.; Kisliuk, P.; Larkin, D.M. Optical spectrum of Cr3+ ions in spinels. J. Chem. Phys. 1968, 48, 5255–5263. [Google Scholar] [CrossRef]
- Derkosch, J.; Mikenda, W.; Preisinger, A. N-lines and chromium-pairs in the luminescence spectra of the spinels ZnAl2O4:Cr3+ and MgAl2O4:Cr3+. J. Solid State Chem. 1977, 22, 127–133. [Google Scholar] [CrossRef]
- Brik, M.G.; Papan, J.; Jovanović, D.J.; Dramićanin, M.D. Luminescence of Cr3+ ions in ZnAl2O4 and MgAl2O4 spinels: Correlation between experimental spectroscopic studies and crystal field calculations. J. Lumin. 2016, 177, 145–151. [Google Scholar] [CrossRef]
- Tran, M.T.; Trung, D.Q.; Tu, N.; Anh, D.D.; Thu, L.T.H.; Du, N.V.; Quang, N.V.; Huyen, N.T.; Kien, N.D.T.; Viet, D.X.; et al. Single-phase far-red-emitting ZnAl2O4:Cr3+ phosphor for application in plant growth LEDs. J. Alloys Compd. 2021, 884, 161077. [Google Scholar] [CrossRef]
- Lin, Y.; Wu, H.; Wang, C.; Zhang, J.; Yao, Q.; Wu, S.; Hu, Y. Co-precipitation synthesis of ZnAl2O4:Cr3+ phosphor for better light penetration in pc-LED. J. Mater. Sci. Mater. Electron. 2022, 33, 19871–19883. [Google Scholar] [CrossRef]
- Pott, G.T.; McNicol, B.D. Luminescence of Cr3+ ions in ordered and disordered LiAl5O8. J. Solid State Chem. 1973, 7, 132–137. [Google Scholar] [CrossRef]
- Khaidukov, N.M.; Nikonov, K.S.; Brekhovskikh, M.N.; Kirikova, N.Y.; Kondratyuk, V.A.; Makhov, V.N. Low-temperature luminescence of lithium aluminate spinel LiAl5O8 doped with chromium ions. Inorg. Mater. 2022, 58, 751–763. [Google Scholar] [CrossRef]
- Sevast’yanov, B.K.; Sviridov, D.T.; Orekhova, V.P.; Pasternak, L.B.; Sviridova, R.K.; Veremeichik, T.F. Optical absorption spectrum of excited Cr3+ ions in yttrium aluminum garnet. Sov. J. Quantum Electron. 1973, 2, 339. [Google Scholar] [CrossRef]
- Yamaga, M.; Henderson, B.; O’Donnell, K.P.; Yue, G. Temperature dependence of the lifetime of Cr3+ luminescence in garnet crystals. Appl. Phys. B 1990, 51, 132–136. [Google Scholar] [CrossRef]
- Głuchowski, P.; Pązik, R.; Hreniak, D.; Stręk, W. Luminescence properties of Cr3+:Y3Al5O12 nanocrystals. J. Lumin. 2009, 129, 548–553. [Google Scholar] [CrossRef]
- Martín-Rodríguez, R.; Valiente, R.; Rodríguez, F.; Bettinelli, M. Temperature and pressure dependence of the optical properties of Cr3+-doped Gd3Ga5O12 nanoparticles. Nanotechnology 2011, 22, 265707. [Google Scholar] [CrossRef] [PubMed]
- Wood, D.L.; Ferguson, J.; Knox, K.; Dillon, J.F., Jr. Crystal-field spectra of d3,7 ions. III. Spectrum of Cr3+ in various octahedral crystal fields. J. Chem. Phys. 1963, 39, 890–898. [Google Scholar] [CrossRef]
- Skvortsova, V.; Mironova-Ulmane, N.; Trinkler, L.; Merkulov, V. Optical properties of natural and synthetic beryl crystals. IOP Conf. Ser. Mater. Sci. Eng. 2015, 77, 012034. [Google Scholar] [CrossRef]
- Liu, G.; Molokeev, M.S.; Xia, Z. Structural rigidity control toward Cr3+-based broadband near-infrared luminescence with enhanced thermal stability. Chem. Mater. 2022, 34, 1376–1384. [Google Scholar] [CrossRef]
- Rajendran, V.; Fang, M.-H.; Huang, W.-T.; Majewska, N.; Lesniewski, T.; Mahlik, S.; Leniec, G.; Kaczmarek, S.M.; Pang, W.K.; Peterson, V.K.; et al. Chromium ion pair luminescence: A strategy in broadband near-infrared light-emitting diode design. J. Am. Chem. Soc. 2021, 143, 19058–19066. [Google Scholar] [CrossRef]
- Back, M.; Ueda, J.; Brik, M.G.; Lesniewski, T.; Grinberg, M.; Tanabe, S. Revisiting Cr3+-doped Bi2Ga4O9 spectroscopy: Crystal field effect and optical thermometric behavior of near-infrared-emitting singly-activated phosphors. ACS Appl. Mater. Interfaces 2018, 10, 41512–41524. [Google Scholar] [CrossRef]
- Zhou, J.; Xia, Z. Synthesis and near-infrared luminescence of La3GaGe5O16:Cr3+ phosphors. RSC Adv. 2014, 4, 46313–46318. [Google Scholar] [CrossRef]
- Zhao, F.Y.; Cai, H.; Zhang, S.Y.; Song, Z.; Liu, Q.L. Octahedron-dependent near-infrared luminescence in Cr3+-activated phosphors. Materialstoday Chem. 2022, 23, 100704. [Google Scholar] [CrossRef]
- Kobayashi, R.; Tamura, H.; Kamada, Y.; Kakihana, M.; Matsushima, Y. A new host compound of aluminum lithium fluoride oxide for deep red phosphors based on Mn4+, Fe3+ and Cr3+. ECS Trans. 2019, 88, 225–236. [Google Scholar] [CrossRef]
- Belov, S.F.; Abaeva, T.I.; Rozdin, I.A.; Varfolomeev, M.B. Reaction of Al2O3 with LiF. Inorg. Mater. 1984, 20, 1675–1676. [Google Scholar]
- Takahashi, H.; Takahashi, H.; Watanabe, K.; Kominami, H.; Hara, K.; Matsushima, Y. Fe3+ red phosphors based on lithium aluminates and an aluminum lithium oxyfluoride prepared from LiF as the Li Source. J. Lumin. 2017, 182, 53–58. [Google Scholar] [CrossRef]
- Wang, Q.; Liao, J.; Kong, L.; Qiu, B.; Li, J.; Huang, H.; Wen, H. Luminescence properties of a non-rare-earth doped oxyfluoride LiAl4O6F:Mn4+ red phosphor for solid-state lighting. J. Alloys Compd. 2019, 772, 499–506. [Google Scholar] [CrossRef]
- Izumi, F.; Momma, K. Three-dimensional visualization in powder diffraction. Solid State Phenom. 2007, 130, 15–20. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Kawamura, K. Environmental Nano-Mechanics·Molecular Simulations. Available online: https://kats-labo.jimdofree.com/mxdorto-mxdtricl/ (accessed on 25 December 2023).
- Ichikawa, J.; Kominami, H.; Hara, K.; Kakihana, M.; Matsushima, Y. Electronic structure calculation of Cr3+ and Fe3+ in phosphor host materials based on relaxed structures by molecular dynamics simulation. Technologies 2022, 10, 56. [Google Scholar] [CrossRef]
- Datta, R.K.; Roy, R. Phase transitions in LiAl5O8. J. Am. Ceram. Soc. 1963, 46, 388–390. [Google Scholar] [CrossRef]
- Pott, G.T.; McNicol, B.D. Zero-phonon transition and fine structure in the phosphorescence of Fe3+ ions in ordered and disordered LiAl5O8. J. Chem. Phys. 1972, 56, 5246–5254. [Google Scholar] [CrossRef]
- McNicol, B.D.; Pott, G.T. Luminescence of Mn ions in ordered and disordered LiAl5O8. J. Lumin. 1973, 6, 320–334. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Mironova-Ulmane, N.; Brik, M.G.; Grube, J.; Krieke, G.; Kemere, M.; Antuzevics, A.; Gabrusenoks, E.; Skvortsova, V.; Elsts, E.; Sarakovskis, A.; et al. EPR, optical and thermometric studies of Cr3+ ions in the α-Al2O3 synthetic single crystal. Opt. Mater. 2022, 132, 112859. [Google Scholar] [CrossRef]
- Singh, V.; Chakradhar, R.P.S.; Rao, J.L.; Kwak, H.-Y. Characterization, EPR and photoluminescence studies of LiAl5O8:Cr phosphors. Solid State Sci. 2009, 11, 870–874. [Google Scholar] [CrossRef]
- Tanabe, Y.; Sugano, S. On the absorption spectra of complex ions. I. J. Phys. Soc. Jpn. 1954, 9, 753–766. [Google Scholar] [CrossRef]
- Tanabe, Y.; Sugano, S. On the absorption spectra of complex ions II. J. Phys. Soc. Jpn. 1954, 9, 766–779. [Google Scholar] [CrossRef]
- Tanabe, Y.; Sugano, S. On the absorption spectra of complex ions, III the calculation of the crystalline field strength. J. Phys. Soc. Jpn. 1956, 11, 864–877. [Google Scholar] [CrossRef]
- Vink, A.P.; De Bruin, M.A.; Roke, S.; Peijzel, P.S.; Meijerink, A. Luminescence of exchange coupled pairs of transition metal ions. J. Electrochem. Soc. 2001, 148, E313–E320. [Google Scholar] [CrossRef]
- De Biasi, R.S.; Rodrigues, D.C.S. Influence of chromium concentration and particle size on the ESR linewidth of Al2O3:Cr3+ powders. J. Mater. Sci. 1981, 16, 968–972. [Google Scholar] [CrossRef]
- Wenzel, R.F.; Kim, Y.W. Linewidth of the electron paramagnetic resonance of (Al2O3)1−x(Cr2O3)x. Phys. Rev. 1965, 140, A1592–A1598. [Google Scholar] [CrossRef]
- Grant, W.J.C.; Strandberg, M.W.P. Line shapes of paramagnetic resonances of chromium in ruby. Phys. Rev. 1964, 135, A727–A739. [Google Scholar] [CrossRef]
- Manenkov, A.A.; Prokhorov, A.M. The fine structure of the spectrum of the paramagnetic resonance of the ion Cr3+ in Chromium corundum. Sov. Phys.-JETP 1955, 1, 611. [Google Scholar]
- Zaripov, M.M.; Shamonin, I.I. Paramagnetic resonance in synthetic ruby. Sov. Phys.-JETP 1956, 3, 171–175. [Google Scholar]
- Geusic, J.E. Paramagnetic fine structure spectrum of Cr+++ in a single ruby crystal. Phys. Rev. 1956, 102, 1252–1253. [Google Scholar] [CrossRef]
- Manenkov, A.A.; Prokhorov, A.M. Hyperfine structure of the paramagnetic resonance spectrum of 53Cr3+ in Al2O3. Sov. Phys.-JETP 1957, 4, 288–289. [Google Scholar]
- Zverev, G.M.; Prokhorov, A.M. Fine structure and hyperfine structure of paramagnetic resonance of Cr+++ in synthetic ruby. Sov. Phys.-JETP 1958, 7, 354–355. [Google Scholar]
- Schulz-Du Bois, E.O. Paramagnetic spectra of substituted sapphires–Part I: Ruby. Bell Syst. Tech. J. 1959, 38, 271–290. [Google Scholar] [CrossRef]
- De Biasi, R.S.; Rodrigues, D.C.S. Measurement of small concentrations of Cr and Fe in α-Al2O3 using electron spin resonance. J. Am. Ceram. Soc. 1985, 68, 409–412. [Google Scholar] [CrossRef]
- Orton, J.W. Electron Paramagnetic Resonance: An introduction to Transition Group Ions in Crystals; ILIFFE Book Ltd.: London, UK, 1968. [Google Scholar]
- Ardelean, I.; Ilonca, G.; Peteanu, M.; Barbos, E.; Indrea, E. EPR and magnetic susceptibility studies of xCr2O3-(1−x) 3B2O3-PbO glasses. J. Mater. Sci. 1982, 17, 1988–1996. [Google Scholar] [CrossRef]
- Landry, R.J.; Fournier, J.T.; Young, C.G. Electron spin resonance and optical absorption studies of Cr3+ in a phosphate glass. J. Chem. Phys. 1967, 46, 1285–1290. [Google Scholar] [CrossRef]
- McClure, D.S. Optical spectra of transition-metal ions in corundum. J. Chem. Phys. 1962, 36, 2757–2779. [Google Scholar] [CrossRef]
- Rigaku Co. Measurement of Trace Components Using D/teX Ultra. Available online: https://japan.rigaku.com/en/applications/bytes/xrd/miniflex/1302286925 (accessed on 25 December 2023).
Preparation Temperature | Chemical Composition |
---|---|
1100 °C | Al4.69 Li1.31 F0.28 O7.55 |
1200 °C | Al4.73 Li1.27 F0.17 O7.65 |
1300 °C | Al4.83 Li1.17 F0.10 O7.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamada, Y.; Hayasaka, R.; Uchida, K.; Suzuki, T.; Takei, T.; Kitaura, M.; Kominami, H.; Hara, K.; Matsushima, Y. Deep Red Photoluminescence from Cr3+ in Fluorine-Doped Lithium Aluminate Host Material. Materials 2024, 17, 338. https://doi.org/10.3390/ma17020338
Kamada Y, Hayasaka R, Uchida K, Suzuki T, Takei T, Kitaura M, Kominami H, Hara K, Matsushima Y. Deep Red Photoluminescence from Cr3+ in Fluorine-Doped Lithium Aluminate Host Material. Materials. 2024; 17(2):338. https://doi.org/10.3390/ma17020338
Chicago/Turabian StyleKamada, Yuki, Ryusei Hayasaka, Kento Uchida, Taisei Suzuki, Takahiro Takei, Mamoru Kitaura, Hiroko Kominami, Kazuhiko Hara, and Yuta Matsushima. 2024. "Deep Red Photoluminescence from Cr3+ in Fluorine-Doped Lithium Aluminate Host Material" Materials 17, no. 2: 338. https://doi.org/10.3390/ma17020338
APA StyleKamada, Y., Hayasaka, R., Uchida, K., Suzuki, T., Takei, T., Kitaura, M., Kominami, H., Hara, K., & Matsushima, Y. (2024). Deep Red Photoluminescence from Cr3+ in Fluorine-Doped Lithium Aluminate Host Material. Materials, 17(2), 338. https://doi.org/10.3390/ma17020338