Thermodynamic Guidelines for the Mechanosynthesis or Solid-State Synthesis of MnFe2O4 at Relatively Low Temperatures
Abstract
:1. Introduction
2. Methods
2.1. Thermodynamic Modelling
2.2. Experimental Methods
3. Thermodynamic Guidelines
3.1. Synthesis from Oxide and/or Metallic Precursors
3.2. Synthesis from Carbonate + Carbonate or Carbonate + Oxide Precursor Mixtures
3.3. Synthesis from Hydroxide + Oxide or Hydroxide + Oxyhydroxide Precursor Mixtures
4. Experimental Validation
4.1. Synthesis from Oxide Mixtures
4.2. Synthesis from Carbonate + Oxide Mixtures
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pérez-Vega, R.; Abad, A.; García-Labiano, F.; Gayán, P.; de Diego, L.F.; Izquierdo, M.T.; Adánez, J. Chemical Looping Combustion of gaseous and solid fuels with manganese-iron mixed oxide as oxygen carrier. Energy Convers. Manag. 2018, 159, 221–223. [Google Scholar] [CrossRef]
- Abian, M.; Abad, A.; Izquierdo, M.T.; Gayan, P.; de Diego, L.F.; Garcia-Labiano, F.; Adanez, J. Titanium substituted manganese-ferrite as an oxygen carrier with permanent magnetic properties for chemical looping combustion of solid fuels. Fuel 2017, 195, 38–48. [Google Scholar] [CrossRef]
- Sukmarani, G.; Kusumaningrum, R.; Noviyanto, A.; Fauzi, F.; Habieb, A.M.; Amal, M.I.; Rochman, N.T. Synthesis of manganese ferrite from manganese ore prepared by mechanical milling and its application as an inorganic heat-resistant pigment. J. Mat. Res. Technol. 2020, 9, 8497–8506. [Google Scholar] [CrossRef]
- Arjmand, M.; Leion, H.; Mattisson, T.; Lyngfelt, A. Investigation of different manganese ores as oxygen carriers in chemical-looping combustion (CLC) for solid fuels. Appl. Energy 2014, 113, 1883–1894. [Google Scholar] [CrossRef]
- Kang, Y.B.; Jung, I.H. Thermodynamic modelling of oxide phases in the Fe–Mn–O system. J. Phys. Chem. Solids 2016, 98, 237–246. [Google Scholar] [CrossRef]
- Kjellqvist, L.; Selleby, M. Thermodynamic assessment of the Fe-Mn-O system. J. Phase Equilibria Diffus. 2010, 31, 113–134. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Liu, B.; Wang, J.; Han, G.; Zhang, Y. Characterization and property of magnetic ferrite ceramics with interesting multilayer structure prepared by solid-state reaction. Ceram. Int. 2021, 47, 10927–10939. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Y.; Wang, J.; Lu, M.; Peng, Z.; Li, G.; Jiang, T. Investigations on the MnO2-Fe2O3 system roasted in air atmosphere. Adv. Powder Technol. 2017, 28, 2167–2176. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, Y.; Kang, Z. A low temperature synthesis of MnFe2O4 nanocrystals by microwave-assisted ball-milling. Chem. Eng. J. 2013, 215–216, 235–239. [Google Scholar] [CrossRef]
- Levy, D.; Pastero, L.; Hoser, A.; Viscovo, G. Thermal expansion and cation partitioning of MnFe2O4 (Jacobsite) from 1.6 to 1276 K studied by using neutron powder diffraction. Solid State Commun. 2015, 201, 15–19. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Wang, Z.L.; Chakoumakos, B.C.; Yin, J.S. Temperature dependence of cation distribution and oxidation state in magnetic Mn-Fe ferrite nanocrystals. J. Am. Chem. Soc. 1998, 120, 1800–1804. [Google Scholar] [CrossRef]
- Zhou, Z.; Du, Y.; Xi, S.; Xu, Z. Spinel manganese ferrites for oxygen electrocatalysis: Effect of Mn valency and occupation site. Electrocatalysis 2018, 9, 287–292. [Google Scholar] [CrossRef]
- Mallesh, S.; Srinivas, V. A comprehensive study on thermal stability and magnetic propertoies of MnZn-ferrite nanoparticles. J. Magn. Magn. Mater. 2019, 475, 290–303. [Google Scholar] [CrossRef]
- Sepelak, V.; Duvel, A.; Wilkening, M.; Becker, K.D.; Heitjans, P. Mechanochemical reactions and syntheses of oxides. Chem. Soc. Rev. 2013, 42, 7507–7522. [Google Scholar] [CrossRef]
- Sepelak, V.; Bergmann, I.; Feldhoff, A.; Heitjans, P.; Krumeich, F.; Menzel, D.; Litterst, F.J.; Campbell, S.J.; Becker, K.D. Nanocrystalline Nickel Ferrite, NiFe2O4: Mechanosynthesis, Nonequilibrium Cation Distribution, Canted Spin Arrangement, and Magnetic Behavior. J. Phys. Chem. C 2007, 11, 5026–5033. [Google Scholar] [CrossRef]
- Mahmoud, M.H.; Hamdeh, H.H.; Ho, J.C.; O’Shea, M.J.; Walker, J.C. Moessbauer studies of manganese ferrite fine particles processed by ball-milling. J. Magn. Magn. Mat. 2000, 220, 139–146. [Google Scholar] [CrossRef]
- Padella, F.; Alvani, C.; La Barbera, A.; Ennas, G.; Liberatore, R.; Varsano, F. Mechanosynthesis and process characterization of nanostructured manganese ferrite. Mater. Chem. Phys. 2005, 90, 172–177. [Google Scholar] [CrossRef]
- Bolarín-Miró, A.M.; Vera-Serna, P.; Sánchez-De Jesús, F.; Cortés-Escobedo, C.A.; Martínez-Luevanos, A. Mechanosynthesis and magnetic characterisation of nanocrystalline manganese ferrites. J. Mater. Sci. Mater. Electron. 2011, 22, 1046–1052. [Google Scholar] [CrossRef]
- Berbenni, V.; Marinia, A.; Profumo, A.; Cucca, L. The Effect of High Energy Milling on the Solid State Synthesis of MnFe2O4 from Mixtures of MnO–Fe2O3 and Mn3O4–Fe2O3. Z. Naturforsch. B 2003, 58, 415–422. [Google Scholar] [CrossRef]
- Şimşek, T.; Akansel, S.; Özcan, Ş.; Ceylan, A. Synthesis of MnFe2O4 nanocrystals by wet-milling under atmospheric conditions. Ceram. Int. 2014, 40, 7953–7956. [Google Scholar] [CrossRef]
- Ding, J.; Mc Cormick, P.G.; Street, R. Formation of spinel Mn-ferrite during mechanical alloying. J. Magn. Magn. Mat. 1997, 171, 309–314. [Google Scholar] [CrossRef]
- Luo, J. Preparation of manganese ferrite powders by mechanochemical process. Adv. Mat. Res. 2011, 284, 2268–2271. [Google Scholar] [CrossRef]
- Lazarevic, Z.Z.; Jovalekic, C.; Recnik, A.; Ivanovski, V.N.; Mitric, M.; Romcevi, M.J.; Paunovic, N.; Cekic, B.Ð.; Romcevi, N.Z. Study of manganese ferrite powders prepared by a soft mechanochemical route. J. Alloys Compd. 2011, 509, 9977–9985. [Google Scholar] [CrossRef]
- Behera, C.; Choudhary, R.N.P.; Das, P.R. Size dependent electrical and magnetic properties of mechanically-activated MnFe2O4 nanoferrite. Ceram. Int. 2015, 41, 13042–13954. [Google Scholar] [CrossRef]
- Osmokrovic, P.; Jovalekic, C.; Manojlovic, D.; Pavlovic, M.B. Synthesis of MnFe2O4 nanoparticles by mechanochemical reaction. J. Optoelectron. Adv. Mater. 2006, 8, 312–324. [Google Scholar]
- Antunes, I.; Ruivo, L.C.M.; Tarelho, L.A.C.; Yaremchenko, A.A.; Kovalevsky, A.V.; Frade, J.R. MnFe2O4-based spinels by mechanochemical and thermochemical reaction of siderite and MnO2 powder mixtures. Ceram. Int. 2023, 49, 19495–19504. [Google Scholar] [CrossRef]
- Aslibeiki, B.; Kameli, P.; Salamati, H.; Eshraghi, M.; Tahmasebi, T. Superspin glass state in MnFe2O4 nanoparticles. J. Magn. Magn. Mat. 2010, 322, 2929–2934. [Google Scholar] [CrossRef]
- Muroi, M.; Street, R.; McCormick, P.G.; Amighian, J. Magnetic properties of ultrafine MnFe2O4 powders prepared by mechanochemical processing. Phys. Rev. B 2001, 63, 184414. [Google Scholar] [CrossRef]
- Yokokawa, H.; Kawada, T.; Dokiya, M. Construction of chemical potential diagrams for metal-metal-nonmetal systems: Applications to the decomposition of double oxides. J. Amer. Ceram. Soc. 1989, 72, 2104–2110. [Google Scholar] [CrossRef]
- Yokokawa, H. Generalised Chemical Potential Diagram and Its Applications to Chemical Reactions at Interfaces between Dissimilar Materials. J. Phase Equilibria 1999, 20, 258–287. [Google Scholar] [CrossRef]
- Yokokawa, H.; Sakai, N.; Kawada, T.; Dokiya, M. Thermodynamic stabilities of perovskite oxides for electrodes and other electrochemical materials. Solid State Ion. 1992, 52, 43–46. [Google Scholar] [CrossRef]
- Yokokawa, H. Understanding materials compatibility. Annu. Rev. Mater. Res. 2003, 33, 581–610. [Google Scholar] [CrossRef]
- Yokokara, H.; Kawada, T.; Dokiya, M. Generalized chemical potential diagrams for metal-oxygen-sulfur systems. Denki Kagaku 1988, 56, 751–756. [Google Scholar]
- Vitorino, N.M.D.; Kovalevsky, A.V.; Ferro, M.C.; Abrantes, J.C.C.; Frade, J.R. Design of NiAl2O4 cellular monoliths for catalytic applications. Mater. Des. 2017, 117, 332–337. [Google Scholar] [CrossRef]
- Ruivo, L.C.M.; Pio, D.T.; Yaremchenko, A.A.; Tarelho, L.C.A.; Frade, J.R.; Kantarelis, E.; Engvall, K. Iron-based catalyst (Fe2-xNixTiO5) for tar decomposition in biomass gasification. Fuel 2021, 300, 120859. [Google Scholar] [CrossRef]
- Pio, D.T.; Gomes, H.G.M.F.; Ruivo, L.C.M.; Matos, M.A.A.; Monteiro, J.F.; Frade, J.R.; Tarelho, L.A.C. Concrete as low-cost catalyst to improve gas quality during biomass gasification in a pilot-scale gasifier. Energy 2021, 233, 120931. [Google Scholar] [CrossRef]
- Pinto, R.G.; Yaremchenko, A.A.; Baptista, M.F.; Tarelho, L.A.C.; Frade, J.R. Synthetic fayalite Fe2SiO4 by kinetically controlled reaction between hematite and silicon carbide. J. Amer. Ceram. Soc. 2019, 102, 5090–5102. [Google Scholar] [CrossRef]
- Antunes, I.; Ruivo, L.C.M.; Tarelho, L.A.C.; Yaremchenko, A.A.; Frade, J.R. Solid state synthesis of Ca2Fe2O5 by reactive firing of calcite and siderite. Ceram. Int. 2022, 48, 34025–34032. [Google Scholar] [CrossRef]
- Pinto, R.G.; Frade, J.R.; Yaremchenko, A.A. Synthesis of cerium aluminate by the mechanical activation of aluminum and ceria precursors and firing in controlled atmospheres. J. Amer. Ceram. Soc. 2023, 106, 923–932. [Google Scholar] [CrossRef]
- Monteiro, J.F.; Ferreira, A.A.L.; Antunes, I.; Fagg, D.P.; Frade, J.R. Thermodynamic restrictions on mechanosynthesis of strontium titanate. J. Solid State Chem. 2012, 185, 143–149. [Google Scholar] [CrossRef]
- Bale, C.W.; Bélisle, E.; Chartrand, P.; Decterov, S.A.; Eriksson, G.; Gheribi, A.E.; Hack, K.; Jung, I.H.; Kang, Y.B.; Melançon, J.; et al. FactSage Thermochemical Software and Databases—2010–2016. Calphad 2016, 54, 35–53. [Google Scholar] [CrossRef]
- Armijo, J.S. The kinetics and mechanism of solid-state spinel formation: A review and critique. Oxid. Met. 1969, 1, 171–198. [Google Scholar] [CrossRef]
- Martins, F.H.; Silva, F.G.; Paula, F.L.O.; Gomes, J.A.; Aquino, R.; Mestnik-Filho, J.; Bonville, P.; Porcher, F.; Perzynski, R.; Depeyrot, J. Local structure of core−shell MnFe2O4+δ-based nanocrystals: Cation distribution and valence states of manganese ions. J. Phys. Chem. C 2017, 121, 8982–8991. [Google Scholar] [CrossRef]
- Dieckmann, R.; Witt, C.A.; Mason, T.O. Defects and Cation Diffusion in Magnetite (V): Electrical Conduction, Cation Distribution and Point Defects in Fe3-δO4. Ber. Bunsenges. Phys. Chem. 1983, 87, 495–503. [Google Scholar] [CrossRef]
- Grau-Crespo, R.; Al-Baitai, A.Y.; Saadoune, I.; De Leeuw, N.H. Vacancy ordering and electronic structure of γ−Fe2O3 (maghemite): A theoretical investigation. J. Phys. Condens. Matter. 2010, 22, 255401. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, A.; Eppstein, R.; Sun, J.; Smeaton, M.A.; Paik, H.; Kourkoutis, L.F.; Schlom, D.G.; Toroker, M.C.; Robinson, R.D. Breakdown of the small-polaron hopping model in higher-order spinels. Adv. Mater. 2020, 32, 2004490. [Google Scholar] [CrossRef]
- Lee, J.-H.; Martin, M.; Yoo, H.I. Self and impurity cation diffusion in manganese-zinc ferrite Mn1−x−yZnxFe2+yO4. J. Phys. Chem. Solids 2000, 61, 1597–1605. [Google Scholar] [CrossRef]
- Haneda, H.; Ishigaki, T.; Tanaka, J.; Sakaguchi, I.; Ichinose, N. Diffusion Mechanism of Oxide Ions in Mn-Zn-ferrites. J. Jap. Soc. Powder Powder Metall. 1999, 46, 28–35. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.; Han, G.; Zhang, L.; Huang, Y. Facile microwave-assisted synthesis of magnetic ferrite: Rapid interfacial reaction underlying intensifying mechanism. J. Clean. Prod. 2022, 361, 132181. [Google Scholar] [CrossRef]
- Gotor, F.J.; Macias, M.; Ortega, A.; Criado, J.M. Comparative study of the kinetics of the thermal decomposition of synthetic and natural siderite samples. Phys. Chem. Miner. 2000, 27, 495–503. [Google Scholar] [CrossRef]
- Criado, J.M.; Gonzalez, F.; Gonzalez, M. Influence of the CO2 pressure on the kinetics of thermal decomposition of manganese carbonate. J. Therm. Anal. 1982, 24, 59–65. [Google Scholar] [CrossRef]
- Galagher, P.K.; Warne, S.S.T.J. Thermomagnetometry and thermal decomposition of siderite. Thermochim. Acta 1981, 43, 253–267. [Google Scholar] [CrossRef]
- Zhao, Y.; Jin, B.; Yao, W.; Liang, Z. Thermodynamic simulation and experimental investigation of manganese oxide (MnOx) for integrated CO2 capture and conversion via chemical looping route. Fuel 2023, 344, 127997. [Google Scholar] [CrossRef]
- Hubbard, C.R.; Snyder, R.L. RIR—Measurement and use in quantitative XRD. Powder Diffr. 1988, 3, 74–77. [Google Scholar] [CrossRef]
- Mansour, S.F. Structural and magnetic investigations of sub-nano Mn–Mg ferrite prepared by wet method. J. Magn. Magm. Mater. 2011, 323, 1735–1740. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.; Zhang, L.; Zhang, B.; Wang, J.; Zhang, Y.; Han, G. Enhancing magnetism of ferrite via regulation of Ca out of sit A from spinel-type structure by adjusting the CaO/SiO2 mass ratio: Clean and value-added utilization of minerals. J. Solid State Chem. 2022, 307, 122885. [Google Scholar] [CrossRef]
Notation | Vial | % of Balls | Ball-to-Powder Weight Ratio | Rotation Speed | Effective Milling Time | Milling Time:Pause Time | |
---|---|---|---|---|---|---|---|
Material | 10 mm | 15 mm | (mballs:mpowder) | (rpm) | (min) | (min:min) | |
350 rpm | TZP | 100% | - | 7:1 | 350 | 600 | 5:5 |
450 rpm | TZP | 100% | - | 7:1 | 450 | 600 | 5:5 |
TZP low | TZP | 92% | 8% | 7:1 | 450 | 600 | 5:5 |
TZP high | TZP | 67% | 33% | 12:1 | 450 | 800 | 10:5 |
Nylon | Nylon | 67% | 33% | 12:1 | 450 | 800 | 10:5 |
Phase | wt.% | ||
---|---|---|---|
As-Milled | Milled | ||
3 h | 9 h | ||
MnO | 31 | 15 | 2 |
Fe2O3 | 69 | 37 | 16 |
Others | − | 32 | 65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antunes, I.; Baptista, M.F.; Kovalevsky, A.V.; Yaremchenko, A.A.; Frade, J.R. Thermodynamic Guidelines for the Mechanosynthesis or Solid-State Synthesis of MnFe2O4 at Relatively Low Temperatures. Materials 2024, 17, 299. https://doi.org/10.3390/ma17020299
Antunes I, Baptista MF, Kovalevsky AV, Yaremchenko AA, Frade JR. Thermodynamic Guidelines for the Mechanosynthesis or Solid-State Synthesis of MnFe2O4 at Relatively Low Temperatures. Materials. 2024; 17(2):299. https://doi.org/10.3390/ma17020299
Chicago/Turabian StyleAntunes, Isabel, Miguel F. Baptista, Andrei V. Kovalevsky, Aleksey A. Yaremchenko, and Jorge R. Frade. 2024. "Thermodynamic Guidelines for the Mechanosynthesis or Solid-State Synthesis of MnFe2O4 at Relatively Low Temperatures" Materials 17, no. 2: 299. https://doi.org/10.3390/ma17020299
APA StyleAntunes, I., Baptista, M. F., Kovalevsky, A. V., Yaremchenko, A. A., & Frade, J. R. (2024). Thermodynamic Guidelines for the Mechanosynthesis or Solid-State Synthesis of MnFe2O4 at Relatively Low Temperatures. Materials, 17(2), 299. https://doi.org/10.3390/ma17020299