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Abstract: Herein, thermodynamic assessment is proposed to screen suitable precursors for the solid-
state synthesis of manganese ferrite, by mechanosynthesis at room temperature or by subsequent
calcination at relatively low temperatures, and the main findings are validated by experimental
results for the representative precursor mixtures MnO + FeO3, MnO2 + Fe2O3, and MnO2 +2FeCO3.
Thermodynamic guidelines are provided for the synthesis of manganese ferrite from (i) oxide and/or
metallic precursors; (ii) carbonate + carbonate or carbonate + oxide powder mixtures; (iii) other
precursors. It is also shown that synthesis from metallic precursors (Mn + 2Fe) requires a controlled
oxygen supply in limited redox conditions, which is hardly achieved by reducing gases H2/H2O or
CO/CO2. Oxide mixtures with an overall oxygen balance, such as MnO + Fe2O3, act as self-redox
buffers and offer prospects for mechanosynthesis for a sufficient time (>9 h) at room temperature.
On the contrary, the fully oxidised oxide mixture MnO2 + Fe2O3 requires partial reduction, which
prevents synthesis at room temperature and requires subsequent calcination at temperatures above
1100 ◦C in air or in nominally inert atmospheres above 750 ◦C. Oxide + carbonate mixtures, such as
MnO2 +2FeCO3, also yield suitable oxygen balance by the decomposition of the carbonate precursor
and offer prospects for mechanosynthesis at room temperature, and residual fractions of reactants
could be converted by firing at relatively low temperatures (≥650 ◦C).

Keywords: manganese ferrite; mechanosynthesis; solid-state synthesis; thermodynamic guidelines

1. Introduction

The Mn−Fe−O system is based on abundant transition metal elements and offers rich
redox flexibility in mixed-oxide compounds, such as spinel compositions (Mn, Fe)3O4 or
bixbyite (Mn, Fe)2O3 . Low-cost precursors combined with affordable processing meth-
ods may broaden the applicability of Mn − Fe − O materials from up-to-date applica-
tions of ferrites in nanotechnologies to mass production processes such as the chemical
looping gasification of biomass [1], oxygen storage materials for chemical looping com-
bustion [2], pigments [3], etc., while also extending the applicability of corresponding
single-oxide Fe − O and Mn − O systems [4]. Available low-grade Fe- and Mn-rich ores
also contribute to the feasibility of some of these applications of manganese ferrite [3]. In
this case, one should also consider the role of gangue components of the natural precursor,
which might affect relevant properties and/or may segregate as secondary crystalline
phases or in the amorphous fraction after high-temperature firing.

Phase equilibria in the Mn − Fe − O system depend on the Mn : Fe ratio and thermo-
chemical conditions of processing, i.e., redox conditions and temperature, as described by
phase diagrams [5] and thermodynamic modelling [6]. Thus, prospects to obtain single-
phase MnFe2O4 depend on firing schedules and specific atmospheres such as CO2/CO [7],
which may induce unusual microstructures and potential impacts on the magnetic and
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dielectric properties of ferrites. The effective phases obtained by solid-state reactions may
also depend on starting precursors [8].

Conditions of processing, combined with subsequent heat treatments [9–11], also de-
termine the crystallite size, changes in oxidation states, and cation occupancy in tetrahedral
and octahedral positions of MnxFe3−xO4 spinels, with corresponding effects on relevant
properties and prospective applications [12]. In addition, thermochemical treatments may
cause the selective segregation of iron oxides or manganese oxides [13] and corresponding
changes in the Mn : Fe ratio of nonstoichiometric spinels MnxFe3−xO4.

Thus, it is important to develop flexible methods allowing the synthesis of ferrites
in wide ranges of mechanochemical and/or thermochemical conditions, including pro-
cessing at room temperature by direct mechanosynthesis from solid precursor mixtures,
to avoid undue changes promoted at higher temperatures, depending on suitable precur-
sors [14]. Mechanochemical treatments may also induce nanostructuring and changes in
site occupancy [15], including the nanostructuring of MnFe2O4 after previous firing at high
temperature [16].

The high density and hardness of steel milling vials and balls are most suitable for
high-energy milling to overcome the kinetic limitations of room-temperature solid-state ki-
netics. However, these milling media may induce contamination with metallic Fe, changing
the intended Fe : Mn stoichiometry, or causing the onset of secondary mixed-oxide phases,
such as (Fe, Mn)O [17]. The onset of metallic Fe was also reported after the mechanosynthe-
sis of a 0.5Mn2O3 + Fe2O3 powder mixture, in spite of its stoichiometric ratio (Mn:Fe = 1:2)
and oxygen excess relative to the spinel structure, i.e., O:(Mn + Fe) > 4:3 [18]. Differ-
ently, MnO + Fe2O3 or 1/3Mn3O4 + Fe2O3 powder mixtures did not react under mild
mechanical activation, and conversion to manganese ferrite required calcination at about
900 ◦C in an inert atmosphere [19]. Metallic Fe + Mn precursors were used as precursors
for the mechanosynthesis of MnFe2O4 by wet milling [20], and metal + oxide precursor
mixtures were also proposed, such as 2Fe + MnO2 [9] or Mn + Mn2O3 + 3Fe2O3 [21]. On
the contrary, the mechanical activation of fully oxidised precursors (MnO2 + Fe2O3) only
induced amorphisation, even after 40 h, and conversion to MnFe2O4 required subsequent
calcination at high temperatures in the order of 1200 ◦C [22], except possibly in relatively
reducing conditions [7] or a vacuum [21].

Non-oxide precursors have also been proposed such as mixtures of Mn(OH)2 + Fe2O3
or Mn(OH)2 + Fe(OH)3. Both mixtures converted to MnFe2O4 after mechanosynthesis in a steel
vial and with steel balls for 25 h [23]. The onset of intermediate phases after a shorter milling time
shows that the stable oxyhydroxide phase FeOOH forms readily under mechanical activation
by the decomposition of Fe(OH)3 or partial hydration of Fe2O3 in contact with Mn(OH)2.

Mixed carbonate + oxide precursor mixtures were also proposed, namely MnCO3 +Fe2O3,
which were milled at 450 rpm in toluene, for as long as 90 h, and required subsequent cal-
cining at 750 ◦C [24] or other combinations of mechanical activation and calcination [25], for
conversion to MnFe2O4. The 2FeCO3 +MnO2 powder mixture was found more successful in
reaching conversion to the spinel phase at room temperature, within the detection limits of
X-ray diffraction, by direct mechanosynthesis at a sufficiently high milling rate, even without
subsequent calcination [26].

Other precursors were also proposed for the mechanochemical synthesis of MnFe2O4, such
as the milling of nitrate mixtures with citric acid and subsequent calcination at 300–400 ◦C [27],
or the mechanically assisted disproportionation reaction of 2FeCl3 + 4MnO → MnFe2O4 +
3MnCl2 [28].

Thus, the main objective of this work was to propose guidelines for the room-temperature
mechanosynthesis of MnFe2O4 from different combinations of precursor mixtures or by
mechanical activation and subsequent calcination at intermediate temperatures, avoiding
tedious trial and error tests and minimizing undue experimental work. This was guided by
thermodynamic predictions and demonstrated by experimental evidence using representative
mixtures of precursors.
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2. Methods
2.1. Thermodynamic Modelling

Quasi-planar chemical potential diagrams for mixed metal-oxide systems were de-
rived analogously to the method that was proposed by Yokokawa and co-authors [29,30],
previously applied to assess the phase stability in a variety of systems in solid-state elec-
trochemical applications [31], and to assess their contamination [30,32] or degradation
by interaction with reactive gases [33]. Other recent references address relevant issues
of materials proposed for catalytic applications in different systems such as Ni − Al −
O [34], Fe − Ti − O [35], CaO − SiO − CO2 [36], etc., or the synthesis of catalytic materials
in the systems Fe − Si − O [37], Ca − Fe − O [38], or Ce − Al − O [39], and guidelines for
the processing of SrTiO3 by mechanosynthesis [40].

Similar methods were applied here as guidelines for the mechanosynthesis of MnFe2O4
from different combinations of precursors in the systems Mn− Fe−O or Mn− Fe−O−C.
Chemical potential diagrams were derived from 2-phase equilibria, which establish rela-
tions between the chemical potentials of the transition elements, the chemical potentials
of O2 and/or CO2, and the free energy of the corresponding reactions. One may refer to
the MnCO3/MnFe2O4 equilibrium as a representative example:

Mn + 0.5MnFe2O4 + 1.5CO2 ⇐⇒ Fe + 1.5MnCO3 + 1/4O2; (1)

∆µMn − ∆µFe = RTln(aMn/aFe) = ∆G + 1/4RTln(pO2)− 1.5RTln(pCO2). (2)

These are expressed per unit of Mn and unit of Fe to obtain a ready relation between their
activity ratio and the free energy of the reaction. In this case, we obtained planar diagrams
for the dependence of the chemical potentials of transition elements RTln(aMn/aFe) vs. the
chemical potential of oxygen RTln(pO2), for a specified partial pressure of CO2. Thermody-
namic data required for the calculations of free energy were retrieved from the database of the
FACTSAGE v.5.5 software package [41].

These chemical potential diagrams can be a suitable guideline for the solid-state kinet-
ics of the formation of generic spinels AB2O4, which has been related to the chemical poten-
tial gradient of the controlling species across the reaction product, namely ∆µA, for condi-
tions when the controlling species is An+ (Figure 1a,b) or −∆µB for Bm+ (Figure 1c,d) [42].
In fact, the controlling cationic species may also depend on the redox conditions and tetrahe-
dral or octahedral site occupancy, with variable degrees of inversion, and possibly also devi-
ations from the nominal trivalent/divalent ratio, {[Fe3+] + [Mn3+]}:{[Fe2+] + [Mn2+]} >
2:1 [43]; this may be compensated by cation vacancies

(
Fe, Mn)3−δO4 [44]. High-energy

milling or subsequent firing may also induce variable degrees of vacancy ordering [45],
with an impact on diffusivity.

Thus, one must consider the combined differences ∆µA − ∆µB to account for both
cases of controlling cationic species or their combination, assuming that charge neutrality
is readily sustained by electronic conductivity, relying on the hopping of polarons [46]. In
addition, porous samples are expected to allow ready oxygen transport, minimising local
gradients of the chemical potential of oxygen ( ∆µO2 ≈ 0

)
. Otherwise, one should consider

the co-diffusion of cationic and anionic species, which also depends on ∆µO2 (Figure 1b,d).
In fact, the diffusivities of different cationic species in spinels [47] are expected to exceed
the diffusivity of oxygen ions [48], at least at high temperatures (≥1200 ◦C).
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Figure 1. Schematic representation of mechanisms of solid-state synthesis of AB2O4 spinels from AO
and B2O3 precursors under the corresponding gradients of chemical potentials, controlled by the
transport of a cationic species An+ (a,b) or Bm+ (c,d), with ready gas phase transport in a porous
reacting medium (a,c), or under additional limitations of gas phase transport and transport of oxide
ions (b,d).

2.2. Experimental Methods

The MnO + Fe2O3 (Sigma Aldrich, St. Louis, MO, USA, 99%) powder mixture was
used as a case study to demonstrate the mechanosynthesis of MnFe2O4 at room tempera-
ture from precursor mixtures with oxygen balance. MnO was obtained by the reduction
of MnO2 (Alfa Aesar, Ward Hill, MA, USA, 99%) in flowing 10% H2–90% N2 at 850 ◦C for
5 h. Mechanosynthesis was performed in air, in a PM100 Retsch planetary ball mill, using
a TZP vial (Retsch, Haan, Germany, 125 cm3) and TZP balls (TOSOH Co., Tokyo, Japan)
of diameters 10 mm and 15 mm at a ratio of 2:1, with a balls/powder weight ratio of 14:1,
at a rotational speed of 500 rpm, and for 3 or 9 h of cumulative milling time. Milling was
performed for periods of 10 min with a subsequent pause of 5 min to prevent overheating
by attrition. Powder X-ray diffraction (XRD) was performed for the phase identification
of precursors and reacted mixtures after mechanosynthesis, using a Rigaku SmartLab SE
diffractometer (Rigaku, Tokyo, Japan , in the X-ray fluorescence reduction mode of a 2D
detector with a CuKα radiation source (40 kV, 30 mA), in the 2θ range 10−90◦, with a step
size = 0.02◦, and with a speed of 3 ◦/min. Nickel powder (Alfa Aesar, 99.9%) was added as
an internal reference to quantify phase contents.

The fully oxidised oxide mixture MnO2 + Fe2O3 was selected as a case study of precur-
sors which require a combination of mechanical activation and subsequent thermochemical
treatment. In this case, mechanical activation was performed in a TZP vial, with TZP
zirconia balls of diameter 10 mm and with a balls/powder weight ratio of 10:1, at 350 or
450 rpm, for 10 h of cumulative milling time, with periods of 5 min milling followed by a
5 min pause. Subsequent thermal treatments of activated powders were performed in air
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and in argon atmospheres in the temperature range of 750 to 1000 ◦C. XRD was used for
phase identification in as-milled precursors and after thermal treatments.

A mixture of MnO2 + FeCO3-based natural siderite was used as a case study of
mechanosynthesis from an oxide + carbonate precursor mixture, under different milling
conditions, as shown in Table 1. Several samples which were mechanically activated at
450 rpm, were subsequently treated at temperatures from 550 ◦C to 900 ◦C for times ranging
from 2 h to 8 h in an Ar atmosphere. The cation composition of the natural siderite was
assessed by inductively coupled plasma optical emission spectroscopy (ICP-OES) (Jobin
Yvon Activa M, Horiba, Kyoto, Japan), yielding: 70.5% Fe, 18.6% Mg, 5.6% Ca, 3.4% Si, and
1.9% Al.

Table 1. Conditions of mechanical activation or mechanosynthesis of MnO2 + siderite powder mixtures.

Notation
Vial % of Balls Ball-to-Powder

Weight Ratio
Rotation

Speed
Effective

Milling Time
Milling

Time:Pause Time

Material 10 mm 15 mm (mballs:mpowder) (rpm) (min) (min:min)

350 rpm TZP 100% - 7:1 350 600 5:5

450 rpm TZP 100% - 7:1 450 600 5:5

TZP low TZP 92% 8% 7:1 450 600 5:5

TZP high TZP 67% 33% 12:1 450 800 10:5

Nylon Nylon 67% 33% 12:1 450 800 10:5

3. Thermodynamic Guidelines
3.1. Synthesis from Oxide and/or Metallic Precursors

Figure 2 shows the chemical potential diagram for metal-oxide phases in the Mn−Fe−
O system at room temperature, including the driving forces for the solid-state reaction from
the stoichiometric MnO + Fe2O3 mixture; this confirms the prospects of room-temperature
mechanosynthesis. The driving force is expected to converge to ∆µMn − ∆µFe ≈ 35 kJ/mol,
which corresponds to the chemical potential differences between the three-phase con-
tacts MnO/Mn3O4/MnFe2O4 and Fe3O4/Fe2O3/MnFe2O4, as shown in Figure 2, for suf-
ficiently porous samples with the ready transport of O2 and minimum gradients of the
chemical potential of oxygen ∆µO2 .
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In addition, the MnO + Fe2O3 powder mixture yields a precise oxygen balance in
contact with O2-lean atmospheres:

MnO + Fe2O3 → MnFe2O4. (3)

The free energy ∆GR = −25 kJ/mol shows that this reaction is spontaneous, assuming
self-controlled redox conditions, as expected in sealed or inert atmospheres or under
moderate vacuum [17]. In fact, the redox pairs MnO/Mn3O4 and Fe3O4/Fe2O3 provide
nearly stable redox conditions, at nearly identical chemical potentials of O2, and may act
as temporary redox buffers in nominally inert atmospheres (e.g., Ar) or even in air. In
these conditions, one may assume that the MnO/MnFe2O4 equilibrium converges towards
the MnO − MnFe2O4 − Mn3O4 triple point, and Fe2O3/MnFe2O4 equilibrium converges
towards the Fe2O3 − MnFe2O4 − Fe3O4 triple point.

Oxygen balance is also expected for the synthesis of MnFe2O4 from mixtures of Mn3O4
and Fe3O4:

1/3Mn3O4 + 2/3Fe3O4 → MnFe2O4; (4)

with the free energy of the reaction ∆GR = −24 kJ/mol. In fact, the 1/3Mn3O4+2/3Fe3O4
precursor mixture may even provide better kinetic conditions for the mechanosynthesis
of MnFe2O4 as compared to the MnO + Fe2O3 mixture, based on the structural similarity
of Fe3O4 and MnFe2O4 (space group Fd3m). Thus, one expects gradual concentration
profiles across a diffuse interface Fe3O4/MnFe2O4 boundary, which is represented by a
dotted line in Figure 2. In addition, the Mn : Fe ratio in manganese ferrite may deviate
from the nominal stoichiometry, i.e., Mn1+xFe2+xO4. A clear boundary with a sharp con-
centration change is only expected at the MnFe2O4/Mn3O4 interface, taking into account
the structural differences between the cubic structure of MnFe2O4 (space group Fd3m) and
the tetragonal structure of Mn3O4 (space group I41/amd).

The MnO2 + 2Fe2O powder mixture also allows oxygen balance:

MnO2 + 2FeO → MnFe2O4 (5)

and the free energy of this reaction ∆GR = −167 kJ/mol indicates that this should be even
more spontaneous than Equations (3) or (4). However, the mechanisms of this reaction may
be complex since FeO is a very unstable phase and may oxidise readily to Fe3O4 in contact
with the strongly oxidising phase MnO2, which may also undergo gradual reduction through
intermediate phases (Mn2O3 and Mn3O4) and, eventually, down to the Mn3O4/MnFe2O4 in-
terface in Figure 2. In fact, the two-phase Fe3O4/Fe2O3 redox pair is strongly reducing relative
to the redox pairs MnO2/Mn2O3 and Mn3O4/Mn2O3 and less reducing relative to the redox
conditions of the three-phase contact Mn3O4/Fe2O3/MnFe2O4.

Other oxide mixtures require different approaches to meet the oxygen balance. Ding
et al. [21] reported the synthesis of a MnFe2O4-based spinel by the mechanical activation
of Mn2O3 + Fe2O3 powder mixtures in Ar atmosphere:

0.5Mn2O3 + Fe2O3 → MnFe2O4 + 0.25O2. (6)

In this case, the free energy of this reaction ∆GR = +67 kJ/mol shows that the inert
atmosphere (Ar) does not meet this requirement at room or intermediate temperature
(Figure 3a) since the redox conditions of Ar only reach the stability window of MnFe2O4 at
temperatures above about 800 ◦C (Figure 3b). Firing in air would require even higher
temperatures, namely above 1100 ◦C (Figure 3c); this suggests an apparent contradiction
between the actual thermodynamic predictions and the reported experimental results
obtained in Ar or air at a relatively low temperature [21]. In this case, one may assume that
the oxygen balance was reached by the incorporation of a fraction of metallic Fe from the
milling balls and vial, as mentioned by others [18], i.e.:

1/3Fe + 4/9Mn2O3 + 8/9Fe2O3 → Mn8/9Fe19/9O4. (7)
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Figure 3. Chemical potential diagrams for the reactivity of different combinations of oxide and/or
metallic precursors at 773 K (a), 1073 K (b), and 1373 K (c). The shaded green area shows the stability
range of manganese ferrite, and the shaded red area is the redox range which may be adjusted with
the H2/H2O redox pair, from H2-rich conditions H2:H2O = 100 to H2-lean conditions H2:H2O = 0.01.
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A similar compensation to reach the oxygen balance may be provided by a fraction of
Mn, as reported also by Ding et al. [21]:

1/3Mn + 1/3Mn2O3 + Fe2O3 → MnFe2O4. (8)

The free energy of this reaction ∆GR = −95 kJ/mol also shows that this should be sponta-
neous, except for difficulties raised by the high instability of the metallic precursor.

Figure 3 also shows that even higher firing temperatures should be required for the
synthesis of manganese ferrite from the most stable oxide mixture (MnO2 + Fe2O3):

MnO2 + Fe2O3 → MnFe2O4 + 0.5O2. (9)

In this case, the free energy ∆GR = +108 kJ/mol shows that reactivity should require
highly reducing conditions or the synthesis of MnFe2O4 in air at high temperatures, i.e.,
1100 ◦C [49] or higher temperatures [8]. Inert atmospheres or a vacuum may allow synthesis
at somewhat lower temperatures but still in the order of 800 ◦C.

Figure 3 also emphasises the limited temperature range when the redox pair H2/H2O
may be used to adjust the thermochemical conditions of MnFe2O4. This shows that H2-
based gases only provide feasible oxygen balance for synthesis from Mn2O3 + Fe2O3 or
MnO2 + Fe2O3 from room temperature to about 773 K, depending on the H2 : H2O ratio,
and from H2-rich conditions (e.g., H2 : H2O = 100) to H2-lean conditions (H2 : H2O = 0.01).
Thus, the H2/H2O pair also fails as a redox buffer at intermediate temperatures in the
range of 500 ◦C−800 ◦C. Still, the H2 : H2O redox buffer may explain the feasibility of
the direct mechanosynthesis of MnFe2O4 from metallic precursors in wet conditions [20],
as follows:

Mn + 2Fe + 4H2O ⇐⇒ MnFe2O4 + 4H2. (10)

Note that this reaction should be highly spontaneous in a wet hydrogen atmosphere
(∆GR = −204 kJ/mol). A fraction of metallic precursor added to mixtures of MnO2 and
Fe2O3 may also allow oxygen balance by the partial substitution of hematite:

MnO2 + 2/3Fe + 2/3Fe2O3 ⇐⇒ MnFe2O4; (11)

(∆GR = −171 kJ/mol) or by changing the Mn : Fe ratio in the manganese ferrite:

0.6Fe + 0.8MnO2 + 0.8Fe2O3 ⇐⇒ Mn4/5Fe11/5O4. (12)

This metallic fraction may be introduced by the erosion of steel milling media [17,18].

3.2. Synthesis from Carbonate + Carbonate or Carbonate + Oxide Precursor Mixtures

Figure 4 shows the stability ranges of iron carbonate and manganese carbonate and
their equilibrium with the oxide phase or metallic Fe. This emphasises that the high-energy
milling of carbonate mixtures is unlikely to yield manganese ferrite at room temperature
due to the wide stability range of manganese carbonate, even when the partial pressure
of CO2 remains low (Figure 4a). An onset of manganese ferrite from carbonate precursors
and under a CO2-rich atmosphere is only expected upon heating to temperatures above
560 K, as also shown in Figure 4c, or somewhat lower temperatures in a CO2-lean atmo-
sphere, such as above 473 K with pCO2 ≈ 0.01 atm, after previous decomposition of iron
carbonate. In fact, the redox range of FeCO3 stability in Figure 4 narrows rapidly upon
approaching this temperature (Figure 4b), in close agreement with experimental evidence
that the decomposition of FeCO3 occurs likely upon heating above about 200 ◦C for syn-
thetic FeCO3 or at higher temperatures for low-grade natural siderite minerals [50]. In this
case, the decomposition of siderite only retains the divalent state of iron as a thermody-
namically unstable phase at intermediate temperatures, evolving to Fe3O4 + Fe in an inert
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atmosphere, and progressing by extinction of the fraction of metallic Fe and subsequent
oxidation to magnetite or hematite in sufficiently oxidising atmospheres.

4FeCO3 → 4FeO + 4CO2 ↑→ Fe + Fe3O4
O2→ 1.5Fe3O4

O2→ 2Fe2O3. (13)
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Figure 4. Chemical potential diagrams for the stability of iron and manganese carbonates and their
equilibrium with corresponding oxides at 298 K with pCO2 = 0.0004 atm (a) and at 453 K (b),
560 K (c), and 643 K (d) with pCO2 = 1.0 atm.

The stability ranges of manganese carbonate [51] and iron carbonate [52] and their
decomposition temperatures also depend on operating atmospheres and may be delayed
by kinetic limitations. For example, the decomposition of MnCO3 in atmospheres with a
moderate partial pressure of CO2 (≈20 kPa) and upon heating at 6 K/min reached a peak
at ≈ 685 K, and the corresponding activation energy was about 270 kJ/mol [51]. From
these parameters, one may predict a decomposition peak at ≈ 607 K upon heating at a very
low rate (0.1 K/min); this is close to thermodynamic predictions for the decomposition of
manganese carbonate (MnCO3 → MnO + CO2 ) at T > 607 K under pCO2 ≈ 0.2 atm. Thus,
one may expect the conversion of both carbonate precursors on heating to intermediate
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temperatures, and the stability diagram should converge to the corresponding oxide
phases (Figure 3).

Figure 4 also shows that the synthesis of manganese ferrite by the mechanical activa-
tion of MnCO3 + Fe2O3 powder mixtures should require subsequent heating to intermedi-
ate temperatures at the onset of a stability window for MnFe2O4. In fact, synthesis has been
reported after the mechanical activation of MnCO3 + Fe2O3 precursors and then calcining
at 673 K [25], which is somewhat higher than the decomposition temperature predicted
for MnCO3 → MnO + CO2 in a CO2 atmosphere (≈ 649 K). Thus, one cannot exclude the
possibility of the onset of MnO formed as an intermediate phase before the conversion of
the resulting oxide mixture to MnFe2O4, as described by Equation (3).

Room-temperature mechanosynthesis of MnFe2O4 from manganese dioxide and iron
carbonate was demonstrated recently [26]; this may seem to contradict the thermody-
namic equilibrium predictions at room temperature in a CO2-rich atmosphere (Figure 5a),
which suggests thermodynamic feasibility for the onset of MnCO3 by the partial reduction
of MnO2, combined with the oxidative decomposition of FeCO3:

FeCO3 + MnO2 → 1/2Fe2O3 + MnCO3 + 1/4O2 (14)

with ∆GR = −58 kJ/mol. However, the carbonation of manganese oxides may be hindered
by kinetic limitations, except for the ready carbonation of MnO [53], requiring sufficiently
reducing conditions to reach the redox range of MnO, i.e., RTln(pO2) < −387 kJ/mol at room
temperature. In the reported conditions of mechanical activation of the FeCO3 +MnO2 reac-
tants [26], the reducing conditions should be established by the FeCO3/Fe2O3 redox pair, reach-
ing only RTln(pO2) ≈ −322 kJ/mol in a CO2 atmosphere (Figure 5). Thus, we devised an alter-
native metastable diagram (dashed lines in Figure 5), which is based on metastable two-phase
boundaries in the absence of manganese carbonate; this includes the FeCO3/Fe2O3 boundary,
combined with metastable two-phase boundaries FeCO3/Mn3O4 and FeCO3/MnFe2O4, and
the oxide/oxide boundaries expected for the Mn− Fe−O system in the moderate-to-oxidising
range. This metastable diagram provides a plausible explanation for the onset of MnFe2O4 at
room temperature, assuming that the conditions of high-energy milling are sufficient to over-
come kinetic restrictions. Note also that the metastable window of MnFe2O4 may even be
enlarged by slight overheating (Figure 5b), which may be caused by attrition during mechani-
cal activation.
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Figure 5. Chemical potential diagram for the Mn − Fe − O − C system at pCO2 = 0.5 atm at room
temperature (a) and at 373 K (b). The solid lines show equilibrium diagrams, and the dashed lines
show metastable predictions for reactivity between FeCO3 and MnO2, assuming that the carbonation
of manganese oxide is hindered.
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3.3. Synthesis from Hydroxide + Oxide or Hydroxide + Oxyhydroxide Precursor Mixtures

The mechanosynthesis of manganese ferrite from hydroxide Mn(OH)2 + 2Fe(OH)3
mixtures or hydroxide + oxide Mn(OH)2 + Fe2O3 mixtures was also clearly demon-
strated [23]. However, the chemical potential diagrams (Figure 6a) show that the sta-
ble phases in contact with manganese ferrite should be Mn(OH)2 and FeOOH, because
the Fe(OH)3 phase is unstable and transforms readily to goethite FeOOH during the
high-energy milling of hydroxide mixtures:

Fe(OH)3 → FeOOH + H2O. (15)
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Figure 6. Chemical potential diagram for the Mn−Fe−O−H system at 298 K with pH2O = 0.03 atm
(a) and 343 K with pH2O = 0.10 atm (b).

The stability of the goethite phase may also explain its onset as an intermediate phase,
combined with MnO [23], by the mechanical activation of mixtures of manganese hydroxide
+ hematite:

Mn(OH)2 + Fe2O3 → MnO + 2FeOOH. (16)

Nevertheless, the stability range of MnFe2O4 in equilibrium with the hydroxide +
oxyhydroxide mixture was still very narrow at room temperature (Figure 6a), even in
fairly dry conditions and only up to about pH2O ≈ 0.03 atm, when the chemical poten-
tial driving force ∆µMn − ∆µFe vanished. Thus, one may be surprised by the evidence
that MnFe2O4 still formed after a sufficiently long time (25 h) in air. A plausible explana-
tion for this experimental evidence may be based on slight overheating under high-energy
milling, taking into account that the stability range of MnFe2O4 increases significantly with
slight heating (Figure 6b). Note that the authors of ref. [23] did not mention if milling was
stopped at regular intervals to prevent overheating by attrition.

4. Experimental Validation
4.1. Synthesis from Oxide Mixtures

Figure 7 shows the feasibility of the mechanosynthesis of MnFe2O4 (JCPDS 01-074-
2403) from stoichiometric powder mixtures of MnO (JCPDS 01-075-1090) +Fe2O3 (JCPDS
01-087-1166) at a moderate milling rate of 500 rpm for 3 h to 9 h. Though large fractions
of reactants are still present after milling for a relatively short milling time, one already
observes significant intensity in the main reflections of the spinel phase after 3 h, using Ni
(JCPDS 01-087-0712) as reference. The intensities of precursor phases then drop markedly



Materials 2024, 17, 299 12 of 18

after milling for 9 h, and the spinel phase becomes prevailing, co-existing with residual
contents of reactants (Fe2O3 and MnO) and the onset of magnetite Fe3O4e (JCPDS 01-
079-0418). This confirms the three-phase contact MnFe2O4/Fe2O3/Fe3O4, as indicated in
Figure 2. On the contrary, one did not detect Mn3O4 (JCPDS 01-080-0382) and could not
confirm the three-phase contact MnFe2O4/MnO/Mn3O4 in Figure 2. Still, one may assume
that the redox condition remains reducing and is nearly controlled by the Fe2O3/Fe3O4 re-
dox pair; this retains conditions for reactivity at room temperature, and the kinetics are
mainly determined by the chemical potential gradients of the transition metal elements
(∆µMn−∆µFe) shown in Figure 2.
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The gradual conversion of precursors was also assessed by the reference intensity
ratio (RIR) [54] based on the integrated intensities (Figure 7) of the main reflections
of Fe2O3 (IFe2O3(104)) and MnO (IMnO(200)), taking the main reflection of Ni (INi(111)) as a ref-
erence. The Ni standard was added as 20 wt.% of the reactants’ contents in the stoichiometric
mixture of MnO + Fe2O3. The composition of this three-phase mixture (26.6 wt.%MnO +
57.7 wt.%Fe2O3 + 16.7 wt.%Ni) was then combined with their intensity ratios to obtain the
calibration factors, and these were used to assess the contents of residual reactants after 3 h
and after 9 h, as shown in Table 2.

The fully oxidised mixture MnO2 (JCPDS 00-024-0735) +Fe2O3 is not reactive at room
temperature (Figure 8). In fact, Figure 2 shows a large gap between the redox range of the
reacting MnO2+Fe2O3 mixture and the stability range of MnFe2O4 (∆µO2 ≥ 134 kJ/mol).
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Mechanical activation was performed at 350 rpm or 450 rpm for 10 h, and changes in
milling conditions only yielded a decrease in the intensity of reactant reflections. The
synthesis of MnFe2O4 required subsequent thermochemical treatment at sufficiently high
temperatures to overcome the redox gap, such as heating to about 1000 ◦C in air, as
indicated by the thermodynamic predictions (Figure 2), and firing at lower temperatures
converted the MnO2 precursor to a bixbyite phase, which may contain significant contents
of Fe, i.e., (Mn, Fe)2O3 , in close agreement with thermodynamic modelling [5]. Otherwise,
Figure 3 suggests that firing in an inert (Ar) atmosphere may allow the onset of MnFe2O4 at
≈800 ◦C. In fact, deviations from stoichiometry may explain the results obtained by firing at
750 ◦C in Ar, which already showed the onset of a spinel phase, co-existing with Fe2O3 and
traces of Mn2O3 (JCPDS 01-076-0150). The corresponding thermodynamic predictions
suggest that MnFe2O4 should co-exist with Fe2O3 and Mn3O4 rather than Mn2O3. A
fraction of residual Fe2O3 was still present after firing at 900 ◦C (Figure 8), indicating
kinetic limitations and suggesting that the composition of the spinel phase still deviates
from equilibrium, i.e., Mn1+δFe2−δO4.
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Table 2. Approximate contents of reactants and other phases (mainly the MnFe2O4-based spinel)
after milling the MnO + Fe2O3 mixture.

Phase

wt.%

As-Milled
Milled

3 h 9 h

MnO 31 15 2

Fe2O3 69 37 16

Others − 32 65

4.2. Synthesis from Carbonate + Oxide Mixtures

Figure 9 shows the results of the mechanical activation or mechanosynthesis of mix-
tures of MnO2 + FeCO3-based siderite achieved under the different conditions detailed
in Table 1. We found significant effects of the milling rate, which caused a decrease in the
reflections of both precursors and showed an onset of the main reflections of the spinel
phase upon changing from 350 rpm to 450 rpm. The milling media also played a key role
in the structural changes since the use of mild nylon vial hinders conversion to the spinel
phase and may even enhance the crystallinity of the carbonate phase. On the contrary, the
use of the TZP vial and more severe milling conditions allowed a complete extinction of the
XRD reflections of both precursors. In fact, the free energy ∆GR = −80 kJ/mol suggests
prospects for complete conversion to the spinel:

FeCO3 + MnO2 → 1/2Fe2O3 + MnCO3 + 1/4O2. (17)

Thus, mechanosynthesis can be attained by sufficiently high-energy milling, achieved
with a high balls/powder ratio, a fraction of heavier balls, or a combination of higher
rotation speed and longer time [26].

Still, the reflections of the spinel phase are located between the corresponding reflec-
tions of MnFe2O4 (dashed lines) and Fe3O4 (dotted lines), suggesting partial Mn-deficiency,
i.e., Mn1−xFe2+xO4. Note that magnetite and manganese ferrite possess identical struc-
tures. In addition, a fraction of the initial precursors may be incorporated in a significant
amorphous phase [26], possibly combined with the gangue components from the natural
siderite precursor, which contains relatively large fractions of Mg and Ca. These impuri-
ties may exert significant effects on the structural features and properties of manganese
ferrite [55,56].

Subsequent heat treatments at intermediate temperatures were planned to confirm
that the conversion of MnO2 + FeCO3-based siderite to MnFe2O4 is hindered mainly by
kinetics. The prevailing conversion to the spinel only occurred at temperatures ≥ 900 ◦C,
whereas intermediate temperatures yielded mainly intermediate phases:.

MnO2 + 2FeCO3 → 1/3Mn3O4 + 2/3Fe3O4 + 2CO2 (18)

In fact, we expected a ready decomposition of both precursors upon heating [50,51]
before reaching the lowest firing temperature in Figure 10 (550 ◦C). Heat treatments at
higher temperatures may be controlled by a gradual conversion of the intermediate oxide
phase to the spinel phase, as emphasised by the results obtained by firing at 650 ◦C for
different times (Equation (4)).

In this case, one may assume that the driving force for the synthesis of MnFe2O4 corre-
sponds to the chemical potential differences between the two-phase lines Fe3O4/MnFe2O4
and Mn3O4 → MnFe2O4 , as shown in Figure 2.
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5. Conclusions

Thermodynamic predictions in the form of chemical potential diagrams provide sound
guidelines to assess the feasibility of the solid-state synthesis of manganese ferrite from
different precursors, including oxides, metals, carbonates, hydroxides or oxy-hydroxides,
and their combinations; this is useful to avoid undue experimental work with unsuitable
precursor mixtures and provides suitable recommendations for subsequent heat treatments
in air or controlled atmospheres for conditions where mechanical activation alone is ill
suited to induce the conversion of reactants. Direct mechanosynthesis was predicted for rep-
resentative combinations of oxide + oxide or oxide + metal precursor mixtures with oxygen
balance, and the experimental results confirm the thermodynamic guidelines for the reac-
tant mixture of MnO + Fe2O3. In this case, mechanosynthesis at room temperature yielded
a slightly nonstoichiometric ferrite and residual fractions of reactants (≈16% Fe2O3 and
≈2% MnO) after 9 h. On the contrary, precursors without oxygen balance require a combi-
nation of mechanical activation and subsequent calcining under controlled thermochemical
conditions, as confirmed experimentally for MnO2 + Fe2O3. In this case, this may still
be obtained by subsequent thermal treatments in a neutral atmosphere at T ≥ 750 ◦C, as
indicated by the thermodynamic predictions and confirmed experimentally. The formation
of MnFe2O4 from the oxide + carbonate mixture was predicted by metastable diagrams
in contact with CO2-based atmospheres and was also confirmed by the experimental re-
sults. In this case, kinetic restrictions may hinder the conversion of reactants under mild
mechanical activation, but the ferrite phase still forms when increasing the balls/powder
ratio and using a fraction of heavier balls. Otherwise, the full conversion of reactants
to MnFe2O4 may still require subsequent calcination at ≥650 ◦C.
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