Evolution of the Fermi Surface of 1T-VSe2 across a Structural Phase Transition
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ARPES | Angle resolved photoemission spectroscopy |
HAADF-STEM | High-angle annular dark-field imaging scanning transmission electron microscopy |
STM | Scanning tunneling microscopy |
LEED | Micro low energy electron difraction |
XPEEM/LEEM | X-ray photoemission electron microscopy/low-energy electron microscopy |
FIB | Focused ion beam |
XRD | X-ray diffraction |
References
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 1–15. [Google Scholar] [CrossRef]
- Choi, W.; Choudhary, N.; Han, G.H.; Park, J.; Akinwande, D.; Lee, Y.H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 2017, 20, 116–130. [Google Scholar] [CrossRef]
- Eaglesham, D.; Withers, R.; Bird, D. Charge-density-wave transitions in 1T-VSe2. J. Phys. C Solid State Phys. 1986, 19, 359. [Google Scholar] [CrossRef]
- Tsutsumi, K. X-ray-diffraction study of the periodic lattice distortion associated with a charge-density wave in 1 T-V Se 2. Phys. Rev. B 1982, 26, 5756. [Google Scholar] [CrossRef]
- Coleman, R.; Giambattista, B.; Hansma, P.; Johnson, A.; McNairy, W.; Slough, C. Scanning tunnelling microscopy of charge-density waves in transition metal chalcogenides. Adv. Phys. 1988, 37, 559–644. [Google Scholar] [CrossRef]
- Giambattista, B.; Slough, C.G.; McNairy, W.W.; Coleman, R.V. Scanning tunneling microscopy of atoms and charge-density waves in 1T-TaS 2, 1T-TaSe 2, and 1T-VSe 2. Phys. Rev. B 1990, 41, 10082. [Google Scholar] [CrossRef]
- Grüner, G. The dynamics of charge-density waves. Rev. Mod. Phys. 1988, 60, 1129. [Google Scholar] [CrossRef]
- Terashima, K.; Sato, T.; Komatsu, H.; Takahashi, T.; Maeda, N.; Hayashi, K. Charge-density wave transition of 1 T- V S e 2 studied by angle-resolved photoemission spectroscopy. Phys. Rev. B 2003, 68, 155108. [Google Scholar] [CrossRef]
- Sato, T.; Terashima, K.; Souma, S.; Matsui, H.; Takahashi, T.; Yang, H.; Wang, S.; Ding, H.; Maeda, N.; Hayashi, K. Three-Dimensional Fermi-Surface Nesting in 1 T-VSe2 Studied by Angle-Resolved Photoemission Spectroscopy. J. Phys. Soc. Jpn. 2004, 73, 3331–3334. [Google Scholar] [CrossRef]
- Chen, P.; Chan, Y.H.; Liu, R.Y.; Zhang, H.T.; Gao, Q.; Fedorov, A.V.; Chou, M.Y.; Chiang, T.C. Dimensional crossover and symmetry transformation of charge density waves in VSe 2. Phys. Rev. B 2022, 105, L161404. [Google Scholar] [CrossRef]
- Chen, P.; Pai, W.W.; Chan, Y.H.; Madhavan, V.; Chou, M.Y.; Mo, S.K.; Fedorov, A.V.; Chiang, T.C. Unique gap structure and symmetry of the charge density wave in single-layer VSe 2. Phys. Rev. Lett. 2018, 121, 196402. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Biswas, D.; Rajan, A.; Watson, M.D.; Mazzola, F.; Clark, O.J.; Underwood, K.; Markovic, I.; McLaren, M.; Hunter, A.; et al. Electronic structure and enhanced charge-density wave order of monolayer VSe2. Nano Lett. 2018, 18, 4493–4499. [Google Scholar] [CrossRef] [PubMed]
- Jolie, W.; Knispel, T.; Ehlen, N.; Nikonov, K.; Busse, C.; Gruneis, A.; Michely, T. Charge density wave phase of VSe 2 revisited. Phys. Rev. B 2019, 99, 115417. [Google Scholar] [CrossRef]
- Strocov, V.N.; Shi, M.; Kobayashi, M.; Monney, C.; Wang, X.; Krempasky, J.; Schmitt, T.; Patthey, L.; Berger, H.; Blaha, P. Three-dimensional electron realm in VSe 2 by soft-x-ray photoelectron spectroscopy: Origin of charge-density waves. Phys. Rev. Lett. 2012, 109, 086401. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yin, Q.; Yan, S.; Wu, L.; Wu, X.; Li, M.; Song, W.; Liu, Q.; Ma, H.; Ji, W.; et al. Three-dimensional charge density wave observed by angle-resolved photoemission spectroscopy in 1 T- VSe 2. Phys. Rev. B 2021, 104, 155134. [Google Scholar] [CrossRef]
- Coelho, P.M.; Nguyen Cong, K.; Bonilla, M.; Kolekar, S.; Phan, M.H.; Avila, J.; Asensio, M.C.; Oleynik, I.I.; Batzill, M. Charge density wave state suppresses ferromagnetic ordering in VSe2 monolayers. J. Phys. Chem. C 2019, 123, 14089–14096. [Google Scholar] [CrossRef]
- Kim, T.J.; Ryee, S.; Han, M.J.; Choi, S. Dynamical mean-field study of Vanadium diselenide monolayer ferromagnetism. 2D Mater. 2020, 7, 035023. [Google Scholar] [CrossRef]
- Majchrzak, P.; Pakdel, S.; Biswas, D.; Jones, A.J.H.; Volckaert, K.; Marković, I.; Andreatta, F.; Sankar, R.; Jozwiak, C.; Rotenberg, E.; et al. Switching of the electron-phonon interaction in 1 T- VSe 2 assisted by hot carriers. Phys. Rev. B 2021, 103, L241108. [Google Scholar] [CrossRef]
- Yilmaz, T.; Jiang, X.; Lu, D.; Sheverdyaeva, P.M.; Matetskiy, A.V.; Moras, P.; Mazzola, F.; Vobornik, I.; Fujii, J.; Evans-Lutterodt, K.; et al. Dirac nodal arc in 1T-VSe2. Commun. Mater. 2023, 4, 47. [Google Scholar] [CrossRef]
- Liu, Z.L.; Wu, X.; Shao, Y.; Qi, J.; Cao, Y.; Huang, L.; Liu, C.; Wang, J.O.; Zheng, Q.; Zhu, Z.L.; et al. Epitaxially grown monolayer VSe2: An air-stable magnetic two-dimensional material with low work function at edges. Sci. Bull. 2018, 63, 419–425. [Google Scholar] [CrossRef]
- Van Bruggen, C.; Haas, C. Magnetic susceptibility and electrical properties of VSe2 single crystals. Solid State Commun. 1976, 20, 251–254. [Google Scholar] [CrossRef]
- Thompson, A.H.; Silbernagel, B.G. Correlated magnetic and transport properties in the charge-density-wave states of V Se 2. Phys. Rev. B 1979, 19, 3420. [Google Scholar] [CrossRef]
- Li, D.; Wang, X.; Kan, C.m.; He, D.; Li, Z.; Hao, Q.; Zhao, H.; Wu, C.; Jin, C.; Cui, X. Structural phase transition of multilayer VSe2. ACS Appl. Mater. Interfaces 2020, 12, 25143–25149. [Google Scholar] [CrossRef] [PubMed]
- Ortenzi, L.; Cappelluti, E.; Benfatto, L.; Pietronero, L. Fermi-surface shrinking and interband coupling in iron-based pnictides. Phys. Rev. Lett. 2009, 103, 046404. [Google Scholar] [CrossRef] [PubMed]
- Coldea, A.I.; Blake, S.F.; Kasahara, S.; Haghighirad, A.A.; Watson, M.D.; Knafo, W.; Choi, E.S.; McCollam, A.; Reiss, P.; Yamashita, T.; et al. Evolution of the low-temperature Fermi surface of superconducting FeSe1- x S x across a nematic phase transition. npj Quantum Mater. 2019, 4, 2. [Google Scholar] [CrossRef]
- Fernandes, R.; Chubukov, A.; Schmalian, J. What drives nematic order in iron-based superconductors? Nat. Phys. 2014, 10, 97–104. [Google Scholar] [CrossRef]
- Watson, M.D.; Kim, T.K.; Rhodes, L.C.; Eschrig, M.; Hoesch, M.; Haghighirad, A.A.; Coldea, A.I. Evidence for unidirectional nematic bond ordering in FeSe. Phys. Rev. B 2016, 94, 201107(R). [Google Scholar] [CrossRef]
- Fuh, H.R.; Chang, C.R.; Wang, Y.K.; Evans, R.F.; Chantrell, R.W.; Jeng, H.T. Newtype single-layer magnetic semiconductor in transition-metal dichalcogenides VX2 (X= S, Se and Te). Sci. Rep. 2016, 6, 32625. [Google Scholar] [CrossRef]
- Sahoo, S.; Dutta, U.; Harnagea, L.; Sood, A.K.; Karmakar, S. Pressure-induced suppression of charge density wave and emergence of superconductivity in 1 T- VSe 2. Phys. Rev. B 2020, 101, 014514. [Google Scholar] [CrossRef]
- Yilmaz, T.; Vescovo, E.; Sadowski, J.T.; Sinkovic, B. Spectroscopic evidence of highly correlated electrons in VSe 2. Phys. Rev. B 2022, 105, 245114. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yilmaz, T.; Tong, X.; Sadowski, J.T.; Hwang, S.; Lutterodt, K.E.; Kisslinger, K.; Vescovo, E. Evolution of the Fermi Surface of 1T-VSe2 across a Structural Phase Transition. Materials 2024, 17, 4498. https://doi.org/10.3390/ma17184498
Yilmaz T, Tong X, Sadowski JT, Hwang S, Lutterodt KE, Kisslinger K, Vescovo E. Evolution of the Fermi Surface of 1T-VSe2 across a Structural Phase Transition. Materials. 2024; 17(18):4498. https://doi.org/10.3390/ma17184498
Chicago/Turabian StyleYilmaz, Turgut, Xiao Tong, Jerzy T. Sadowski, Sooyeon Hwang, Kenneth Evans Lutterodt, Kim Kisslinger, and Elio Vescovo. 2024. "Evolution of the Fermi Surface of 1T-VSe2 across a Structural Phase Transition" Materials 17, no. 18: 4498. https://doi.org/10.3390/ma17184498
APA StyleYilmaz, T., Tong, X., Sadowski, J. T., Hwang, S., Lutterodt, K. E., Kisslinger, K., & Vescovo, E. (2024). Evolution of the Fermi Surface of 1T-VSe2 across a Structural Phase Transition. Materials, 17(18), 4498. https://doi.org/10.3390/ma17184498