Effect of Calcium on the Setting Time and Mechanical Property of a Red Mud–Blast Furnace Slag-Based Geopolymer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Method
2.3. Measurements
3. Results
3.1. Mechanical Strength Analysis
3.2. Setting Time and Fluidity Analysis
3.3. XRD Analysis
3.4. XPS Analysis
3.5. Heat Evolution Analysis
3.6. SEM Analysis
4. Conclusions
- Other than calcium carbonate, both calcium oxide and calcium chloride played roles in accelerating the setting times of RM-BFS-based geopolymers. The increases in the proportions of CaO and CaCl2 resulted in reductions in both the initial and final setting times of the geopolymers, but the proportion corresponding to CaCl2 was significantly lower.
- The proper addition of CaCl2 could improve the compressive strength of the RM-BFS-based geopolymer. When the CaCl2 content was 0.5%, the compressive strengths of the geopolymer samples at 7 days and 28 days were the highest, being 79.7 MPa and 92.9 MPa, respectively. However, the excessiveness caused a decrease in the strength due to rapid hardening. The compressive strength of the geopolymer samples decreased with the increase in the CaO proportion. CaCO3 only acted as a fine aggregate for filling the paste.
- The calcium compounds had different mechanisms to accelerate the setting times of RM-BFS-based geopolymers. CaO reacted with water to release massive heat to advance the geopolymerization and generate calcium hydroxide to provide nucleation sites for geopolymerization. CaCl2 had a common mechanism for providing nucleation sites for the geopolymerization, as well as the generation, of hydrated calcium silicate gel, which could fill the pores generated by water evaporation. Building upon the findings of this study, a distinct opportunity exists for further research, particularly to investigate the underlying mechanisms by which calcium ions influence the geopolymerization reaction, with a focus on the formation and structural characteristics of geopolymer gels.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lazorenko, G.; Kasprzhitskii, A. Geopolymer additive manufacturing: A review. Addit. Manuf. 2022, 55, 102782. [Google Scholar] [CrossRef]
- Chen, K.Y.; Wu, D.Z.; Xia, L.L.; Cai, Q.M.; Zhang, Z.Y. Geopolymer concrete durability subjected to aggressive environments—A review of influence factors and comparison with ordinary Portland cement. Constr. Build. Mater. 2021, 279, 122496. [Google Scholar] [CrossRef]
- Lei, M.K.; Wang, X.; Meng, H.; Yan, Z.X.; Lin, J.H.; Wu, Z.S. Study of fly ash-slag geopolymer mortar as a rapid strengthening agent for concrete structures. Constr. Build. Mater. 2023, 394, 132147. [Google Scholar] [CrossRef]
- Adufu, Y.D.; Sore, S.O.; Nshimiyimana, P.; Messan, A.; Escadeillas, G. Effect of curing conditions on physico-mechanical properties of metakaolin-based geopolymer concrete containing calcium carbide residue. Mrs Adv. 2023, 8, 591–595. [Google Scholar] [CrossRef]
- Saloni; Singh, A.; Sandhu, V.; Jatin, P. In Effects of alccofine and curing conditions on properties of low calcium fly ash-based geopolymer concrete. Mater. Today Proc. 2020, 32, 620–625. [Google Scholar] [CrossRef]
- Temuujin, J.; van Riessen, A.; Williams, R. Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. J. Hazard. Mater. 2009, 167, 82–88. [Google Scholar] [CrossRef]
- Yip, C.K.; Lukey, G.C.; Provis, J.L.; van Deventer, J.S.J. Effect of calcium silicate sources on geopolymerisation. Cem. Concr. Res. 2008, 38, 554–564. [Google Scholar] [CrossRef]
- Bahmani, H.; Mostofinejad, D. High-performance concrete based on alkaline earth metal ions-activated slag at ambient temperature: Mechanical and microstructure properties. J. Mater. Res. Technol. 2023, 24, 8703–8724. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Wang, H.; Zhu, Y.C.; Reid, A.; Provis, J.L.; Bullen, F. Using fly ash to partially substitute metakaolin in geopolymer synthesis. Appl. Clay Sci. 2014, 88–89, 194–201. [Google Scholar] [CrossRef]
- Shang, J.; Dai, J.G.; Zhao, T.J.; Guo, S.Y.; Zhang, P.; Mu, B. Alternation of traditional cement mortars using fly ash-based geopolymer mortars modified by slag. J. Clean. Prod. 2018, 203, 746–756. [Google Scholar] [CrossRef]
- Arnoult, M.; Perronnet, M.; Autef, A.; Rossignol, S. How to control the geopolymer setting time with the alkaline silicate solution. J. Non-Cryst. Solids 2018, 495, 59–66. [Google Scholar] [CrossRef]
- Nath, P.; Sarker, P.K. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr. Build. Mater. 2014, 66, 163–171. [Google Scholar] [CrossRef]
- Hadi, M.N.S.; Zhang, H.Q.; Parkinson, S. Optimum mix design of geopolymer pastes and concretes cured in ambient condition based on compressive strength, setting time and workability. J. Build. Eng. 2019, 23, 301–313. [Google Scholar] [CrossRef]
- Tian, K.G.; Wang, Y.S.; Dong, B.Q.; Fang, G.H.; Xing, F. Engineering and micro-properties of alkali-activated slag pastes with Bayer red mud. Constr. Build. Mater. 2022, 351, 128869. [Google Scholar] [CrossRef]
- Xie, J.H.; Chen, W.; Wang, J.J.; Fang, C.; Zhang, B.X.; Liu, F. Coupling effects of recycled aggregate and GGBS/metakaolin on physicochemical properties of geopolymer concrete. Constr. Build. Mater. 2019, 226, 345–359. [Google Scholar] [CrossRef]
- Mucsi, G.; Szabó, R.; Rácz, A.; Kristály, F.; Kumar, S. Combined utilization of red mud and mechanically activated fly ash in geopolymers. Rud.-Geol.-Naft. Zb. 2019, 34, 27–36. [Google Scholar] [CrossRef]
- Kumar, A.; Saravanan, T.J.; Bisht, K.; Kabeer, K. A review on the utilization of red mud for the production of geopolymer and alkali activated concrete. Constr. Build. Mater. 2021, 302, 124170. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.C.; Li, Z.F.; Gao, Y.F.; Liu, C.; Qi, Y.H. Workability and microstructural properties of red-mud-based geopolymer with different particle sizes. Adv. Cem. Res. 2021, 33, 210–223. [Google Scholar] [CrossRef]
- Ahmed, S.; Meng, T.; Taha, M. Utilization of red mud for producing a high strength binder by composition optimization and nano strengthening. Nanotechnol. Rev. 2020, 9, 396–409. [Google Scholar] [CrossRef]
- Albidah, A.S. Effect of partial replacement of geopolymer binder materials on the fresh and mechanical properties: A review. Ceram. Int. 2021, 47, 14923–14943. [Google Scholar] [CrossRef]
- GB/T 1346-2011; Test Methods for Water Requirement of Normal Consistency, Setting Time and Soundness of the Portland Cement. China National Standardization Administration Committee: Beijing, China, 2011.
- GB/T 8077-2012; Methods for Testing Uniformity of Concrete Admixture. China National Standardization Administration Committee: Beijing, China, 2012.
- Lemougna, P.N.; Wang, K.T.; Tang, Q.; Cui, X.M. Study on the development of inorganic polymers from red mud and slag system: Application in mortar and lightweight materials. Constr. Build. Mater. 2017, 156, 486–495. [Google Scholar] [CrossRef]
- Wang, Y.G.; Liu, X.M.; Tang, B.W.; Li, Y.; Zhang, W.; Xue, Y. Effect of Ca/(Si plus Al) on red mud based eco-friendly revetment block: Microstructure, durability and environmental performance. Constr. Build. Mater. 2021, 304, 124618. [Google Scholar] [CrossRef]
- Gong, C.M.; Yang, N.R. Effect of phosphate on the hydration of alkali-activated red mud-slag cementitious material. Cem. Concr. Res. 2000, 30, 1013–1016. [Google Scholar] [CrossRef]
- van Deventer, J.S.J.; Provis, J.L.; Duxson, P.; Lukey, G.C. Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. J. Hazard. Mater. 2007, 139, 506–513. [Google Scholar] [CrossRef]
- Simonsen, M.E.; Sonderby, C.; Li, Z.S.; Sogaard, E.G. XPS and FT-IR investigation of silicate polymers. J. Mater. Sci. 2009, 44, 2079–2088. [Google Scholar] [CrossRef]
- Mudgal, M.; Singh, A.; Chouhan, R.K. Fly ash red mud geopolymer with improved mechanical strength. Clean. Eng. Technol. 2022, 7, 100215. [Google Scholar] [CrossRef]
- Kljajevic, L.M.; Nenadovic, S.S.; Nenadovic, M.T.; Bundaleski, N.K.; Todorovic, B.Z.; Pavlovic, V.B.; Rakocevic, Z.L. Structural and chemical properties of thermally treated geopolymer samples. Ceram. Int. 2017, 43, 6700–6708. [Google Scholar] [CrossRef]
- Kanuchova, M.; Kozakova, L.; Drabova, M.; Sisol, M.; Estokova, A.; Kanuch, J.; Skvarla, J. Monitoring and characterization of creation of geopolymers prepared from fly ash and metakaolin by X-ray photoelectron spectroscopy method. Environ. Prog. Sustain. Energy 2015, 34, 841–849. [Google Scholar] [CrossRef]
- Revathi, T.; Jeyalakshmi, R. XPS, 29Si, 27Al, 11B MAS-NMR, ATR-IR and FESEM characterization of geopolymer based on borax modified water glass activated Fly ash-GGBS blend. Mater. Res. Express 2019, 6, 085337. [Google Scholar] [CrossRef]
- Granizo, M.L.; Alonso, S.; Blanco-Varela, M.T.; Palomo, A. Alkaline activation of metakaolin: Effect of calcium hydroxide in the products of reaction. J. Am. Ceram. Soc. 2002, 85, 225–231. [Google Scholar] [CrossRef]
- Yip, C.K.; Provis, J.L.; Lukey, G.C.; van Deventer, J.S.J. Carbonate mineral addition to metakaolin-based geopolymers. Cem. Concr. Compos. 2008, 30, 979–985. [Google Scholar] [CrossRef]
- Cai, J.M.; Li, X.P.; Tan, J.W.; Vandevyvere, B. Thermal and compressive behaviors of fly ash and metakaolin-based geopolymer. J. Build. Eng. 2020, 30, 101307. [Google Scholar] [CrossRef]
Components (%) | SiO2 | Al2O3 | Na2O | CaO | Fe2O3 | TiO2 | K2O | MgO | SO3 |
---|---|---|---|---|---|---|---|---|---|
RM | 13.73 | 22.4 | 10.13 | 0.61 | 46.19 | 5.51 | 0.17 | 0.12 | 0.65 |
BFS | 28.84 | 14.46 | 0.46 | 42.58 | 0.57 | 1.39 | 0.41 | 7.74 | 2.75 |
No. | Raw Materials | Alkaline Activator/g | Water/g | ||||
---|---|---|---|---|---|---|---|
RM/g | BFS/g | CaO/g | CaCl2/g | CaCO3/g | |||
0 | 250 | 250 | - | - | - | 125 | 114.6 |
1 | 250 | 250 | 5 | - | - | 125 | 114.6 |
2 | 250 | 250 | 10 | - | - | 125 | 114.6 |
3 | 250 | 250 | 15 | - | - | 125 | 114.6 |
4 | 250 | 250 | 20 | - | - | 125 | 114.6 |
5 | 250 | 250 | - | 2.5 | - | 125 | 114.6 |
6 | 250 | 250 | - | 5 | - | 125 | 114.6 |
7 | 250 | 250 | - | 7.5 | - | 125 | 114.6 |
8 | 250 | 250 | - | 10 | - | 125 | 114.6 |
9 | 250 | 250 | - | - | 5 | 125 | 114.6 |
10 | 250 | 250 | - | - | 10 | 125 | 114.6 |
11 | 250 | 250 | - | - | 15 | 125 | 114.6 |
12 | 250 | 250 | - | - | 20 | 125 | 114.6 |
Sample | O 1s (eV/%) | Si 2p3/2(eV) | Al 2p3/2(eV) | Ca 2p3/2(eV) | ||
---|---|---|---|---|---|---|
a | b | c | ||||
Without Adding | 531.1/70.38 | 532.5/18.01 | 529.6/11.61 | 101.8 | 74.2 | 346.8 |
Adding CaO | 531.1/79.75 | 532.6/11.74 | 529.7/8.51 | 101.9 | 74.0 | 346.9 |
Adding CaCl2 | 531.1/77.37 | 532.5/13.09 | 529.6/9.54 | 102.1 | 74.0 | 346.9 |
Adding CaCO3 | 531.1/71.43 | 532.5/17.93 | 529.6/10.64 | 101.8 | 74.1 | 347.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Wu, S.; Huang, H.; Rao, F.; Yang, L. Effect of Calcium on the Setting Time and Mechanical Property of a Red Mud–Blast Furnace Slag-Based Geopolymer. Materials 2024, 17, 4409. https://doi.org/10.3390/ma17174409
Chen Y, Wu S, Huang H, Rao F, Yang L. Effect of Calcium on the Setting Time and Mechanical Property of a Red Mud–Blast Furnace Slag-Based Geopolymer. Materials. 2024; 17(17):4409. https://doi.org/10.3390/ma17174409
Chicago/Turabian StyleChen, Yuxiang, Shengping Wu, Hanhui Huang, Feng Rao, and Lang Yang. 2024. "Effect of Calcium on the Setting Time and Mechanical Property of a Red Mud–Blast Furnace Slag-Based Geopolymer" Materials 17, no. 17: 4409. https://doi.org/10.3390/ma17174409
APA StyleChen, Y., Wu, S., Huang, H., Rao, F., & Yang, L. (2024). Effect of Calcium on the Setting Time and Mechanical Property of a Red Mud–Blast Furnace Slag-Based Geopolymer. Materials, 17(17), 4409. https://doi.org/10.3390/ma17174409