Investigating Flow-Induced Corrosion of Magnesium in Ophthalmological Milieu
Abstract
1. Introduction
- Manufacture of pure magnesium samples specifically designed for testing in an ocular bioreactor;
- Numerical determination of experimental flow rate conditions correlated to the flow-induced shear stress field;
- Development of an ocular bioreactor capable of applying appropriate fluid dynamic conditions;
- Evaluation of corrosion behavior characteristics using sample-specific morphology and profilometry.
2. Materials and Methods
2.1. Pure Magnesium Sample Preparation
2.2. Computational Model
2.3. Corrosion Experimental Setup
2.4. SEM and CLSM Analysis
2.5. Statistical Analysis
3. Results
3.1. Computational Analysis of the Fluid Dynamic inside the Chamber
3.2. Numerical Definition of the Corrosion Experimental Conditions
3.3. Imaging Outcomes and Statistical Profiles of Corrosion Rate
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.J.; Xie, L.; Pan, F.S.; Wang, Y.; Liu, H.; Tang, Y.R.; Hutnik, C.M.L. A feasibility study of using biodegradable magnesium alloy in glaucoma drainage device. Int. J. Ophthalmol. 2018, 11, 135–142. [Google Scholar] [CrossRef]
- Mubagwa, K.; Gwanyanya, A.; Zakharov, S.; Macianskiene, R. Regulation of cation channels in cardiac and smooth muscle cells by intracellular magnesium. Arch. Biochem. Biophys. 2007, 458, 73–89. [Google Scholar] [CrossRef] [PubMed]
- Ellahioui, Y.; Prashar, S.; Gómez-Ruiz, S. A Short Overview on the Biomedical Applications of Silica, Alumina and Calcium Phosphate-based Nanostructured Materials. Curr. Med. Chem. 2016, 23, 4450–4467. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Meng, L.; Xie, W.; Ji, C.; Wang, R.; Zhang, P.; Jin, L.; Sheng, L.; Zheng, Y. Corrosion and in vitro cytocompatibility investigation on the designed Mg-Zn-Ag metallic glasses for biomedical application. J. Magnes. Alloy. 2024, 12, 1566–1580. [Google Scholar] [CrossRef]
- Bairagi, D.; Mandal, S. A comprehensive review on biocompatible Mg-based alloys as temporary orthopaedic implants: Current status, challenges, and future prospects. J. Magnes. Alloy. 2022, 10, 627–669. [Google Scholar] [CrossRef]
- Hassan, S.F.; Islam, M.T.; Saheb, N.; Baig, M.M.A. Magnesium for Implants: A Review on the Effect of Alloying Elements on Biocompatibility and Properties. Materials 2022, 15, 5669. [Google Scholar] [CrossRef] [PubMed]
- Gastaldi, D.; Sassi, V.; Petrini, L.; Vedani, M.; Trasatti, S.; Migliavacca, F. Continuum damage model for bioresorbable magnesium alloy devices—Application to coronary stents. J. Mech. Behav. Biomed. Mater. 2011, 4, 352–365. [Google Scholar] [CrossRef]
- Wang, J.; Giridharan, V.; Shanov, V.; Xu, Z.; Collins, B.; White, L.; Jang, Y.; Sankar, J.; Huang, N.; Yun, Y. Flow-induced corrosion behavior of absorbable magnesium-based stents. Acta Biomater. 2014, 10, 5213–5223. [Google Scholar] [CrossRef]
- Lehmann, O.J. Risk factors for development of post-trabeculectomy endophthalmitis. Br. J. Ophthalmol. 2000, 84, 1349–1353. [Google Scholar] [CrossRef]
- Grillo, C.A.; Alvarez, F.; Fernández Lorenzo de Mele, M.A. Degradation of bioabsorbable Mg-based alloys: Assessment of the effects of insoluble corrosion products and joint effects of alloying components on mammalian cells. Mater. Sci. Eng. C 2016, 58, 372–380. [Google Scholar] [CrossRef]
- Walker, J.; Shadanbaz, S.; Woodfield, T.B.F.; Staiger, M.P.; Dias, G.J. Magnesium biomaterials for orthopedic application: A review from a biological perspective. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 102, 1316–1331. [Google Scholar] [CrossRef]
- Hänzi, A.C.; Gerber, I.; Schinhammer, M.; Löffler, J.F.; Uggowitzer, P.J. On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg–Y–Zn alloys. Acta Biomater. 2010, 6, 1824–1833. [Google Scholar] [CrossRef] [PubMed]
- Erbel, R.; Böse, D.; Haude, M.; Kordish, I.; Churzidze, S.; Malyar, N.; Konorza, T.; Sack, S. Absorbable coronary stents. New promising technology. Herz 2007, 32, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Lim, G.B. DREAMS of a bioabsorbable stent coming true. Nat. Rev. Cardiol. 2013, 10, 120. [Google Scholar] [CrossRef] [PubMed]
- Ramcharitar, S.; Serruys, P.W. Fully biodegradable coronary stents. Am. J. Cardiovasc. Drugs 2008, 8, 305–314. [Google Scholar] [CrossRef]
- Knigge, S.; Mueller, M.; Fricke, L.; Schilling, T.; Glasmacher, B. In Vitro Investigation of Corrosion Control of Magnesium with Degradable Polycaprolactone Coatings for Cardiovascular Grafts. Coatings 2023, 13, 94. [Google Scholar] [CrossRef]
- Tong, P.; Chen, L.; Sun, X.; Li, H.; Feng, Y.; Li, J.; Guan, S. Surface modification of biodegradable magnesium alloy with poly (L-lactic acid) and sulfonated hyaluronic acid nanoparticles for cardiovascular application. Int. J. Biol. Macromol. 2023, 237, 124191. [Google Scholar] [CrossRef]
- Giavaresi, G.; Bellavia, D.; De Luca, A.; Costa, V.; Raimondi, L.; Cordaro, A.; Sartori, M.; Terrando, S.; Toscano, A.; Pignatti, G.; et al. Magnesium Alloys in Orthopedics: A Systematic Review on Approaches, Coatings and Strategies to Improve Biocompatibility, Osteogenic Properties and Osteointegration Capabilities. Int. J. Mol. Sci. 2023, 25, 282. [Google Scholar] [CrossRef]
- Sun, J.; Liu, S.-S.; Zou, D.; He, X.; Shi, Z.-Z.; Li, W.-S. How surface-to-volume ratio affects degradation of magnesium: In vitro and in vivo studies. RSC Adv. 2024, 14, 6805–6814. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, S.; Li, J.; Song, Y.; Zhao, C.; Zhang, X. Dynamic degradation behavior of MgZn alloy in circulating m-SBF. Mater. Lett. 2010, 64, 1996–1999. [Google Scholar] [CrossRef]
- Hiromoto, S.; Yamamoto, A.; Maruyama, N.; Somekawa, H.; Mukai, T. Influence of pH and flow on the polarisation behaviour of pure magnesium in borate buffer solutions. Corros. Sci. 2008, 50, 3561–3568. [Google Scholar] [CrossRef]
- Jafarzadeh, K.; Shahrabi, T.; Oskouei, A.A. Novel approach using EIS to study flow accelerated pitting corrosion of AA5083-H321 aluminum–magnesium alloy in NaCl solution. J. Appl. Electrochem. 2009, 39, 1725–1731. [Google Scholar] [CrossRef]
- Lévesque, J.; Hermawan, H.; Dubé, D.; Mantovani, D. Design of a pseudo-physiological test bench specific to the development of biodegradable metallic biomaterials. Acta Biomater. 2008, 4, 284–295. [Google Scholar] [CrossRef]
- Li, N.; Guo, C.; Wu, Y.H.; Zheng, Y.F.; Ruan, L.Q. Comparative study on corrosion behaviour of pure Mg and WE43 alloy in static, stirring and flowing Hank’s solution. Corros. Eng. Sci. Technol. 2012, 47, 346–351. [Google Scholar] [CrossRef]
- Willumeit, R.; Feyerabend, F.; Huber, N. Magnesium degradation as determined by artificial neural networks. Acta Biomater. 2013, 9, 8722–8729. [Google Scholar] [CrossRef]
- Witte, F.; Bobe, K.; Meier, M. MRI based perfusion measurements in bone after implantation of biodegradable magnesium rods. Eur. Cells Mater. 2013, 26, 2262. [Google Scholar]
- Md Saad, A.P.; Abdul Rahim, R.A.; Harun, M.N.; Basri, H.; Abdullah, J.; Abdul Kadir, M.R.; Syahrom, A. The influence of flow rates on the dynamic degradation behaviour of porous magnesium under a simulated environment of human cancellous bone. Mater. Des. 2017, 122, 268–279. [Google Scholar] [CrossRef]
- Zhu, T.; Yu, Y.; Yang, J.; Shen, Y.; He, L.; Xiong, Y. Dynamic corrosion behavior of AZ80 magnesium alloy with different orientations in simulated body fluid. Mater. Chem. Phys. 2021, 259, 124039. [Google Scholar] [CrossRef]
- Woo, S.K.; Suh, B.-C.; Kim, H.S.; Yim, C.D. Effect of processing history on corrosion behaviours of high purity Mg. Corros. Sci. 2021, 184, 109357. [Google Scholar] [CrossRef]
- Woo, S.K.; Suh, B.-C.; Kim, H.S.; Yim, C.D. Effect of Al addition on corrosion behavior of high-purity Mg in terms of processing history. J. Magnes. Alloy. 2023, 11, 851–868. [Google Scholar] [CrossRef]
- Agarwal, R.; Iezhitsa, L.; Agarwal, P. Pathogenetic role of magnesium deficiency in ophthalmic diseases. BioMetals 2014, 27, 5–18. [Google Scholar] [CrossRef]
- Hatwal, A.; Gujral, A.S.; Bhatia, R.P.S.; Agrawal, J.K.; Bajpai, H.S. Association of hypomagnesemia with diabetic retinopathy. Acta Ophthalmol. 1989, 67, 714–716. [Google Scholar] [CrossRef]
- Elghobashy, M.; Lamont, H.C.; Morelli-Batters, A.; Masood, I.; Hill, L.J. Magnesium and Its Role in Primary Open Angle Glaucoma; A Novel Therapeutic? Front. Ophthalmol. 2022, 2, 897128. [Google Scholar] [CrossRef]
- Ajith, T.A. Possible therapeutic effect of magnesium in ocular diseases. J. Basic Clin. Physiol. Pharmacol. 2020, 31, 20190107. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, N. Vascular endothelial growth factor and age-related macular degeneration: From basic science to therapy. Nat. Publ. Gr. 2010, 16, 1107–1111. [Google Scholar] [CrossRef]
- Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 2003, 9, 669–676. [Google Scholar] [CrossRef]
- Zetterberg, M. Age-related eye disease and gender. Maturitas 2016, 83, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.T.; Harris, A.; Oddone, F.; Siesky, B.; Verticchio Vercellin, A.; Ciulla, T.A. Disease progression pathways of wet AMD: Opportunities for new target discovery. Expert Opin. Ther. Targets 2022, 26, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, P.J.; Brown, D.M.; Heier, J.S.; Boyer, D.S.; Kaiser, P.K.; Chung, C.Y.; Kim, R.Y. Ranibizumab for Neovascular Age-Related Macular Degeneration. N. Engl. J. Med. 2006, 355, 1419–1431. [Google Scholar] [CrossRef]
- Baumal, C.R.; Sørensen, T.L.; Karcher, H.; Freitas, R.L.; Becher, A.; Balez, S.; Clemens, A.; Singer, M.; Kodjikian, L. Efficacy and safety of brolucizumab in age-related macular degeneration: A systematic review of real-world studies. Acta Ophthalmol. 2023, 101, 123–139. [Google Scholar] [CrossRef]
- Cima, M.J.; Lee, H.; Daniel, K.; Tanenbaum, L.M.; Mantzavinou, A.; Spencer, K.C.; Ong, Q.; Sy, J.C.; Santini, J.; Schoellhammer, C.M.; et al. Single compartment drug delivery. J. Control. Release 2014, 190, 157–171. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, P.J.; Schwartz, S.D.; Blumenkranz, M.S.; Miller, J.W.; Haller, J.A.; Reimann, J.D.; Greene, W.L.; Shams, N. Maximum tolerated dose of a humanized anti-vascular endothelial growth factor antibody fragment for treating neovascular age-related macular degeneration. Ophthalmology 2005, 112, 1048–1053. [Google Scholar] [CrossRef]
- Yiallouridou, C.; Acton, J.H.; Banerjee, S.; Waterman, H.; Wood, A. Pain related to intravitreal injections for age-related macular degeneration: A qualitative study of the perspectives of patients and practitioners. BMJ Open 2023, 13, e069625. [Google Scholar] [CrossRef] [PubMed]
- Polat, O.; İnan, S.; Özcan, S.; Doğan, M.; Küsbeci, T.; Yavaş, G.F.; İnan, Ü.Ü. Factors affecting compliance to intravitreal anti-vascular endothelial growth factor therapy in patients with age-related macular degeneration. Türk Oftalmol. Derg. 2017, 47, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Sivaprasad, S.; Oyetunde, S. Impact of injection therapy on retinal patients with diabetic macular edema or retinal vein occlusion. Clin. Ophthalmol. 2016, 10, 939–946. [Google Scholar] [CrossRef]
- Mao, L.; Shen, L.; Niu, J.; Zhang, J.; Ding, W.; Wu, Y.; Fan, R.; Yuan, G. Nanophasic biodegradation enhances the durability and biocompatibility of magnesium alloys for the next-generation vascular stents. Nanoscale 2013, 5, 9517. [Google Scholar] [CrossRef]
- Cunningham, K.S.; Gotlieb, A.I. The role of shear stress in the pathogenesis of atherosclerosis. Lab. Investig. 2005, 85, 9–23. [Google Scholar] [CrossRef]
- Wentzel, J.J.; Whelan, M.D.; van der Giessen, W.J.; van Beusekom, H.M.M.; Andhyiswara, I.; Serruys, P.W.; Slager, C.J.; Krams, R. Coronary stent implantation changes 3-D vessel geometry and 3-D shear stress distribution. J. Biomech. 2000, 33, 1287–1295. [Google Scholar] [CrossRef]
- Bontrager, J.; Mahaparto, A.; Gomes, A.S. Microscopic bio-corrosion evaluations of magnesium surfaces in static and dynamic conditions. J. Microsc. 2014, 255, 104–115. [Google Scholar] [CrossRef]
- Mai, E.D.; Liu, H. Investigation on magnesium degradation under flow versus static conditions using a novel impedance-driven flow apparatus. Prog. Nat. Sci. Mater. Int. 2014, 24, 554–560. [Google Scholar] [CrossRef]
- Ferroni, M.; De Gaetano, F.; Cereda, M.G.; Boschetti, F. Evaluation of the ocular fluid dynamic effects on intraocular magnesium-based device: A comparison between CFD and FSI approaches. Med. Eng. Phys. 2020, 86, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.; Collins, B.; Sankar, J.; Yun, Y. Effect of biologically relevant ions on the corrosion products formed on alloy AZ31B: An improved understanding of magnesium corrosion. Acta Biomater. 2013, 9, 8761–8770. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; He, Y.; Maitz, M.F.; Collins, B.; Xiong, K.; Guo, L.; Yun, Y.; Wan, G.; Huang, N. A surface-eroding poly(1,3-trimethylene carbonate) coating for fully biodegradable magnesium-based stent applications: Toward better biofunction, biodegradation and biocompatibility. Acta Biomater. 2013, 9, 8678–8689. [Google Scholar] [CrossRef]
- Willumeit, R.; Fischer, J.; Feyerabend, F.; Hort, N.; Bismayer, U.; Heidrich, S.; Mihailova, B. Chemical surface alteration of biodegradable magnesium exposed to corrosion media. Acta Biomater. 2011, 7, 2704–2715. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Chen, C.; Niu, J.; Pei, J.; Zhang, H.; Huang, H.; Yuan, G. The processing of Mg alloy micro-tubes for biodegradable vascular stents. Mater. Sci. Eng. C 2015, 48, 400–407. [Google Scholar] [CrossRef]
- Ferroni, M.; Cereda, M.G.; Boschetti, F. A Combined Approach for the Analysis of Ocular Fluid Dynamics in the Presence of Saccadic Movements. Ann. Biomed. Eng. 2018, 46, 2091–2101. [Google Scholar] [CrossRef]
- Ferroni, M.; De Gaetano, F.; Cereda, M.G.; Boschetti, F. A drug delivery analysis of large molecules in ocular vitreous chamber: Dependency on saccadic movements after intravitreal injection. Med. Eng. Phys. 2020, 82, 49–57. [Google Scholar] [CrossRef]
- Gill, P.E.; Murray, W.; Saunders, M.A. SNOPT: An SQP Algorithm for large-scale constrained optimization. SIAM Rev. 2005, 47, 99–131. [Google Scholar] [CrossRef]
- Romano, M.R.; Vallejo-Garcia, J.L.; Romano, V.; Angi, M.; Vinciguerra, P.; Costagliola, C. Thermodynamics of vitreoretinal surgery. Curr. Eye Res. 2013, 38, 371–374. [Google Scholar] [CrossRef]
- Efird, K.D. Flow Effects on Corrosion. In Uhlig’s Corrosion Handbook; Wiley: New York, NY, USA, 2011; pp. 203–213. ISBN 9780470080320. [Google Scholar]
- Xu, L.Y.; Cheng, Y.F. Effect of fluid hydrodynamics on flow-assisted corrosion of aluminum alloy in ethylene glycol–water solution studied by a microelectrode technique. Corros. Sci. 2009, 51, 2330–2335. [Google Scholar] [CrossRef]
Q (mL/min) | Re |
---|---|
100 | 196 |
150 | 317 |
200 | 438 |
250 | 560 |
300 | 684 |
350 | 808 |
400 | 933 |
τtarget [Pa] | Qopt [mL/min] | τcomp [Pa] | Time [min] | Δ [%] |
---|---|---|---|---|
0.01 | 154.26 | 0.010 | 87 | 0.050 |
0.03 | 240.94 | 0.030 | 102 | 0.000 |
0.05 | 317.28 | 0.050 | 140 | 0.002 |
τtarget [Pa] | Qopt [mL/min] |
---|---|
0.008 | 143.5 |
0.01 | 154.3 |
0.023 | 212.8 |
0.032 | 248.3 |
0.04 | 279.4 |
0.046 | 294.6 |
Nelder–Mead | SNOPT | |||||
---|---|---|---|---|---|---|
τtarget [Pa] | Qopt [mL/min] | τcomp [Pa] | Time [min] | Qopt [mL/min] | τcomp [Pa] | Time [min] |
0.01 | 52.025 | 0.001926 | 115 | 154.26 | 0.009995 | 87 |
0.03 | 240.9 | 0.029994 | 133 | 240.94 | 0.03 | 102 |
0.05 | 317.22 | 0.049987 | 220 | 317.28 | 0.050001 | 140 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferroni, M.; De Gaetano, F.; Gastaldi, D.; Cereda, M.G.; Boschetti, F. Investigating Flow-Induced Corrosion of Magnesium in Ophthalmological Milieu. Materials 2024, 17, 4404. https://doi.org/10.3390/ma17174404
Ferroni M, De Gaetano F, Gastaldi D, Cereda MG, Boschetti F. Investigating Flow-Induced Corrosion of Magnesium in Ophthalmological Milieu. Materials. 2024; 17(17):4404. https://doi.org/10.3390/ma17174404
Chicago/Turabian StyleFerroni, Marco, Francesco De Gaetano, Dario Gastaldi, Matteo Giuseppe Cereda, and Federica Boschetti. 2024. "Investigating Flow-Induced Corrosion of Magnesium in Ophthalmological Milieu" Materials 17, no. 17: 4404. https://doi.org/10.3390/ma17174404
APA StyleFerroni, M., De Gaetano, F., Gastaldi, D., Cereda, M. G., & Boschetti, F. (2024). Investigating Flow-Induced Corrosion of Magnesium in Ophthalmological Milieu. Materials, 17(17), 4404. https://doi.org/10.3390/ma17174404