Structure–Elasticity Relationships in Hybrid-Carrageenan Hydrogels Studied by Image Dynamic Light Scattering, Ultra-Small-Angle Light Scattering and Dynamic Rheometry
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Image Dynamic Light Scattering (IDLS)
3.2. Ultra-Small-Angle Light Scattering (USALS)
3.3. Rheological Properties of Gels
4. Conclusions
- –
- Based on the Porod approach related to the fractal dimension of the network, Df, it was found that with an increase in concentration, the level of swelling of the polymer clusters increases, leading to the decrease in the exponent Df from the value of 1.7 (excluded volume effect forms) down to 1.4 (diffusion limited aggregation). These values coincide with the Df computed from the rheological data.
- –
- In more concentrated solutions, fewer hybrid-carrageenan particles are present, i.e., they are made of dense phase, contrary to the more dilute solution. The correlation size determined by the Debye–Bueche approximation for the dilute solution and by Λ for the gels shows a microstructural transition from isotropic suspension of clusters to a network of fibrils. Quantifying the size of hybrid-carrageenan hybrid clusters using the USALS technique encompasses the consideration of the Guinier approximation to determine their radius of gyration Rg. The values obtained for Rg are an indicator of the size of the clusters and showed that with an increase in the concentration of the hybrid carrageenan, this size increases.
- –
- Overall, the results revealed that USALS measurements can provide substantial structural information on hybrid-carrageenan hydrogel systems which explains the strain hardening of the stranded fractal network when submitted to large-amplitude oscillatory shear.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maitra, J.; Shukla, V.K. Cross-linking in Hydrogels—A Review. Am. J. Polym. Sci. 2014, 4, 25–31. [Google Scholar] [CrossRef]
- Crommelin, D.J.A.; Storm, G.; Jiskoot, W.; Stenekes, R.; Mastrobattista, E.; Hennink, W.E. Nano-technological approaches for the delivery of macromolecules. J. Control Release 2003, 87, 81–88. [Google Scholar] [CrossRef]
- Van Tomme, S.R.; Storm, G.; Hennink, W.E. In situ gelling hydrogels for pharmaceutical and biomedical applications. Int. J. Pharm. 2008, 355, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Croisier, F.; Jérôme, C. Chitosan-based biomaterials for tissue engineering. Eur. Polym. J. 2013, 49, 780–792. [Google Scholar] [CrossRef]
- Bernkop-Schnürch, A.; Dünnhaupt, S. Chitosan-based drug delivery systems. Eur. J. Pharm. Biopharm. 2012, 81, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, N.; Gunn, J.; Zhang, M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev. 2010, 62, 83–99. [Google Scholar] [CrossRef]
- Souza, H.K.S.; Kraiem, W.; Ben Yahia, A.; Aschi, A.; Hilliou, L. From Seaweeds to Hydrogels: Recent progress in kappa-2 carrageenans. Materials 2023, 16, 5387. [Google Scholar] [CrossRef]
- Azevedo, G.; Hilliou, L.; Bernardo, G.; Sousa-Pinto, I.; Adams, R.W.; Nilsson, M.; Villanueva, D.R. Tailoring kappa/iota-hybrid carrageenan from Mastocarpus stellatus with desired gel quality through pre-extraction alkali treatment. Food Hydrocoll. 2013, 31, 94–102. [Google Scholar] [CrossRef]
- Mao, B.; Divoux, T.; Snabre, P. Normal force controlled rheology applied to agar gelation. J. Rheol. 2016, 60, 473–489. [Google Scholar] [CrossRef]
- Mejri, M.Z.; Aschi, A. Evaluation of properties and structural transitions of Poly (2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylonitrile)/β-Galactosidase complex coacervates: Effects of pH and aging. Colloids Surf. B Biointerfaces 2022, 217, 112627. [Google Scholar] [CrossRef]
- Owczarz, P.; Ziółkowski, P.; Dziubiński, M. The Application of Small-Angle Light Scattering for Rheo-Optical Characterization of Chitosan Colloidal Solutions. Polymers 2018, 10, 431. [Google Scholar] [CrossRef]
- Dispenza, C.; Todaro, S.; Sabatino, M.A.; Chillura Martino, D.; Martorana, V.; San Biagio, P.L.; Maffei, P.; Bulone, D. Multi-scale structural analysis of xyloglucan colloidal dispersions and hydro-alcoholic gels. Cellulose 2020, 27, 3025–3035. [Google Scholar] [CrossRef]
- Rivas-Araiza, R.; Alcouffe, P.; Rochas, C.; Montembault, A.; David, L. Micron Range Morphology of Physical Chitosan Hydrogels. Langmuir 2010, 26, 17495–17504. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, J.; Cipelletti, L.; Koenderink, G.H. Uncovering the dynamic precursors to motor-driven contraction of active gels. Soft Matter 2019, 42, 8552–8565. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, S.; Chen, Z.; Estrin, D.; Morozova, S. Spatially-Resolved Network Dynamics of Poly(vinyl alcohol) Gels Measured with Dynamic Small Angle Light Scattering. Gels 2022, 8, 394. [Google Scholar] [CrossRef] [PubMed]
- Shibayama, M.; Fujikawa, Y.; Nomura, S. Dynamic Light Scattering Study of Poly (N-isopropylacrylamide-co-acrylic acid) Gels. Macromolecules 1996, 29, 6535–6540. [Google Scholar] [CrossRef]
- Cipelletti, L.; Manley, S.; Ball, R.C.; Weitz, D.A. Universal Aging Features in the Restructuring of Fractal Colloidal Gels. Phys. Rev. Lett. 2000, 84, 2275–2278. [Google Scholar] [CrossRef]
- Hilliou, L.; Wilhelm, M.; Yamanoi, M.; Gonçalves, M.P. Structural and mechanical characterization of κ/ι-hybrid carrageenan gels in potassium salt using Fourier Transform rheology. Food Hydrocoll. 2009, 23, 2322–2330. [Google Scholar] [CrossRef]
- Piculell, L. Gelling Carrageenans. In Food Polysaccharides and Their Applications, 2nd ed.; Stephen, A.M., Phillips, G.O., Williams, P.A., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 239–287. [Google Scholar]
- Diener, M.; Adamcik, J.; Sánchez-Ferrer, A.; Jaedig, F.; Schefer, L.; Mezzenga, R. Primary, secondary, tertiary and quaternary structure levels in linear polysaccharides: From random coil, to single helix to supramolecular assembly. Biomacromolecules 2019, 20, 1731–1739. [Google Scholar] [CrossRef]
- Geonzon, L.C.; Hashimoto, K.; Oda, T.; Matsukawa, S.; Mayumi, K. Elaborating spatiotemporal hierarchical structure of carrageenan gels and their mixtures durig sol-gel transition. Macromolecules 2023, 56, 8676–8687. [Google Scholar] [CrossRef]
- Hilliou, L. Structure–Elastic Properties Relationships in Gelling Carrageenans. Polymers 2021, 13, 4120. [Google Scholar] [CrossRef]
- Cipelletti, L.; Ramos, L.; Manley, S.; Pitard, E.; Weitz, D.A.; Pashkovski, E.E.; Johansson, M. Universal non-diffusive slow dynamics in aging soft matter. Faraday Discuss 2003, 123, 237–251. [Google Scholar] [CrossRef] [PubMed]
- Cipelletti, L.; Ramos, L. Soft dynamics in glassy soft matter. J. Phys. Condens. Matter 2005, 17, R253–R285. [Google Scholar] [CrossRef]
- Privalko, V.P. Glass transition in polymers: Dependence of the Kohlrausch stretching exponent on the kinetic free volume fraction. J. Non-Cryst. Solids 1999, 255, 259–263. [Google Scholar] [CrossRef]
- Shibayama, M.; Norisuye, T. Gel Formation Analyses by Dynamic Light Scattering. Bull. Chem. Soc. Jpn. 2002, 75, 641–659. [Google Scholar] [CrossRef]
- Viet, T.N.T.B.; Nguyen, T.B.; Renou, F.; Nicolai, T. Rheology and microstructure of mixtures of iota and kappa-carrageenan. Food Hydrocoll. 2019, 89, 180–187. [Google Scholar] [CrossRef]
- Bellour, M.; Knaebel, A.; Harden, J.L.; Lequeux, F.; Munch, J.P. Aging processes and scale dependence in soft glassy colloidal suspensions. Phys. Rev. E 2003, 67, 031405. [Google Scholar] [CrossRef]
- Krall, A.H.; Weitz, D.A. Internal Dynamics and Elasticity of Fractal Colloidal Gels. Phys. Rev. Lett. 1998, 80, 778. [Google Scholar] [CrossRef]
- Raspaud, E.; Lairez, D.; Adam, M.; Cotton, J.P. Triblock Copolymers in a Selective Solvent. 2. Semidilute Solutions. Macromolecules 1996, 29, 1269–1277. [Google Scholar] [CrossRef]
- Kureha, T.; Minato, H.; Suzuki, D.; Urayamad, K.; Shibayama, M. Concentration Dependence of Dynamics of Microgel Suspension Investigated by Dynamic Light Scattering. Soft Matter 2019, 15, 5390–5399. [Google Scholar] [CrossRef]
- Peta, K.; Stemp, W.J.; Chen, R.; Love, G.; Brown, C.A. Multiscale characterizations of topographic measurements on lithic materials and microwear using a GelSight Max: Investigating potential archaeological applications. J. Archaeol. Sci. Rep. 2024, 57, 104637. [Google Scholar] [CrossRef]
- Ferri, F. Use of a charge-coupled device camera for low-angle elastic light scattering. J. Rev. Sci. Instrum. 1997, 68, 2265–2274. [Google Scholar] [CrossRef]
- Liu, Z.; Maleki, A.; Zhu, K.; Kjøniksen, A.-L.; Nyström, B. Intramolecular and intermolecular association during chemical cross-linking of dilute solutions of different polysaccharides under the influence of shear flow. J. Phys. Chem. B 2008, 112, 1082–1089. [Google Scholar] [CrossRef]
- Dashtimoghadam, E.; Mirzadeh, H.; Afshar Taromi, F.; Nyström, B. Thermoresponsive biopolymer hydrogels with tunable gel characteristics. RSC Adv. 2014, 4, 39386–39393. [Google Scholar] [CrossRef]
- Dashtimoghadam, E.; Bahlakeh, G.; Salimi-Kenari, H.; Hasani-Sadrabadi, M.M.; Mirzadeh, H.; Nyström, B. Rheological Study and Molecular Dynamics Simulation of Biopolymer Blend Thermogels of Tunable Strength. Biomacromolecules 2016, 17, 3474–3484. [Google Scholar] [CrossRef]
- Svergun, D.I. Determination of the regularization parameter in indirect transform methods using perceptual criteria. J. Appl. Crystallog. 1992, 25, 495–503. [Google Scholar] [CrossRef]
- Lombardo, D.; Calandra, P.; Kiselev, M.K. Structural Characterization of Biomaterials by Means of Small Angle X-rays and Neutron Scattering (SAXS and SANS), and Light Scattering Experiments. Molecules 2020, 25, 5624. [Google Scholar] [CrossRef]
- Marc, B.T.; Laura, L.H.; Yu, Y.B. Split of Chiral Degeneracy in Mechanical and Structural Properties of Oligopeptide−Polysaccharide Biomaterials. Biomacromolecules 2013, 14, 3192–3201. [Google Scholar] [CrossRef]
- Shibayama, M. Spatial inhomogeneity and dynamic fluctuations of polymer gels. Macromol. Chem. Phys. 1998, 199, 1–30. [Google Scholar] [CrossRef]
- Hopkins, J.B.; Gillilan, R.E.; Skou, S. BioXTAS RAW: Improvements to a free open- source pro-gram for small-angle X-ray scattering data reduction and analysis. J. Appl. Crystallogr. 2017, 50, 1545–1553. [Google Scholar] [CrossRef] [PubMed]
- Debye, P.; Bueche, A.M. Scattering by an Inhomogeneous Solid. J. Appl. Phys. 1949, 20, 518–525. [Google Scholar] [CrossRef]
- Zeng, Y.; Grandner, S.; Oliveira, C.L.P.; Thunemann, A.F.; Paris, O.; Pedersen, J.S.; Klappb, S.H.L.; von Klitzing, R. Effect of particle size and Debye length on order parameters of colloidal silica suspensions under confinement. Soft Matter 2011, 7, 10899. [Google Scholar] [CrossRef]
- Shibayama, M. Small-angle neutron scattering on polymer gels: Phase behavior, inhomogeneities and deformation mechanisms. Polym. J. 2011, 43, 18–34. [Google Scholar] [CrossRef]
- Tirado-Miranda, M.; Schmitt, A.; Callejas-Fernández, J.; Fernández-Barbero, A. Dynamic scaling and fractal structure of small colloidal clusters. Colloids Surf. Physicochem. Eng. Asp. 2000, 162, 67–73. [Google Scholar] [CrossRef]
- Tirado-Miranda, M.; Schmitt, A.; Callejas-Fernández, J.; Fernández-Barbero, A. Colloidal Clusters with Finite Binding Energies: Fractal Structure and Growth Mechanism. Langmuir 1999, 15, 3437–3444. [Google Scholar] [CrossRef]
- Chodankar, S.; Aswal, V.K.J.; Kohlbrecher, J.; Vavrin, R.; Wagh, A.G. Structural study of coacervation in protein-polyelectrolyte complexes. Phys. Rev. E 2008, 78, 031913. [Google Scholar] [CrossRef] [PubMed]
- Feddaoui, W.; Aschi, A.; Bey, H.; Othman, T. Study of the complex coacervation mechanism between ovalbumin and the strong polyanion PSSNa: Influence of temperature and pH. Eur. Biophys. J. 2019, 48, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.H.; Teixeira, J. Structure and fractal dimension of protein–detergent complexes. Phys. Rev. Lett. 1986, 57, 2583. [Google Scholar] [CrossRef]
- Kantor, Y.; Witten, T. Mechanical stability of tenuous objects. J. Physique Lett. 1984, 45, 675–679. [Google Scholar] [CrossRef]
- Aubert, C.; Cannell, D.S. Restructuring of colloidal silica aggregates. Phys. Rev. Lett. 1986, 56, 738–741. [Google Scholar] [CrossRef]
- Jones, J.L.; Marques, C.M. Rigid polymer network models. J. Phys. France 1990, 51, 1113–1127. [Google Scholar] [CrossRef]
- Shih, W.-H.; Shih, W.Y.; Kim, S.-I.; Liu, J.; Aksay, I.A. Scaling behavior of the elastic properties of colloidal gels. Phys. Rev. A 1990, 42, 4772–4780. [Google Scholar] [CrossRef] [PubMed]
- Gisler, T.; Ball, R.C.; Weitz, D.A. Strain hardening of fractal colloidal gels. Phys. Rev. Lett. 1999, 82, 1064–1067. [Google Scholar] [CrossRef]
- Moraes, I.C.F.; Hilliou, L. Viscoelastic reversibility of carrageenan hydrogels under large amplitude oscillatory shear: Hybrid carrageenan versus blends. Gels 2024, 10, 524. [Google Scholar] [CrossRef]
- van de Velde, F.; Pereira, L.; Rollema, H.S. The revised NMR chemical shift data of carrageenans. Carbohydr. Res. 2004, 339, 2309–2313. [Google Scholar] [CrossRef]
c (mg/mL) | τ0(s) | α |
---|---|---|
0.5 | 0.13 | 0.69 |
2.5 | 0.11 | 0.93 |
5 | 0.17 | 1.06 |
10 | 1.32 | 1.37 |
c (mg/mL) | Dmax (μm) | Rg (μm) | IGui(0) (a.u.) | ξDB (μm) | Λ (μm) | Df |
---|---|---|---|---|---|---|
0.5 | 3 | 0.89 | 23.01 | 3.6 | n.a. * | 1.7 |
2.5 | 3 | 1.19 | 47.67 | n.a. * | 39.3 | 1.5 |
5 | 4 | 1.95 | 57.5 | n.a. * | 32.6 | 1.4 |
10 | 8 | 2.74 | 244.67 | n.a. * | 32.6 | 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Yahia, A.; Aschi, A.; Faria, B.; Hilliou, L. Structure–Elasticity Relationships in Hybrid-Carrageenan Hydrogels Studied by Image Dynamic Light Scattering, Ultra-Small-Angle Light Scattering and Dynamic Rheometry. Materials 2024, 17, 4331. https://doi.org/10.3390/ma17174331
Ben Yahia A, Aschi A, Faria B, Hilliou L. Structure–Elasticity Relationships in Hybrid-Carrageenan Hydrogels Studied by Image Dynamic Light Scattering, Ultra-Small-Angle Light Scattering and Dynamic Rheometry. Materials. 2024; 17(17):4331. https://doi.org/10.3390/ma17174331
Chicago/Turabian StyleBen Yahia, Amine, Adel Aschi, Bruno Faria, and Loic Hilliou. 2024. "Structure–Elasticity Relationships in Hybrid-Carrageenan Hydrogels Studied by Image Dynamic Light Scattering, Ultra-Small-Angle Light Scattering and Dynamic Rheometry" Materials 17, no. 17: 4331. https://doi.org/10.3390/ma17174331
APA StyleBen Yahia, A., Aschi, A., Faria, B., & Hilliou, L. (2024). Structure–Elasticity Relationships in Hybrid-Carrageenan Hydrogels Studied by Image Dynamic Light Scattering, Ultra-Small-Angle Light Scattering and Dynamic Rheometry. Materials, 17(17), 4331. https://doi.org/10.3390/ma17174331