Axial Crushing and Energy Absorption Integrated Design of Modular Filled Double-Hat Beam Composite Structures
Abstract
1. Introduction
2. FEA Models and Dynamic Experiments
2.1. Finite Element Model of the DHBs
2.2. Experiments
3. The Crashworthiness of Modular DHB Structures
3.1. Three Modular Cell Configurations
3.2. Numerical Results
4. The Effect of Cell Dimensions
4.1. The Geometry of Modular Structures
4.2. Results of These Models
5. The Crashworthiness of Modular DHBs
5.1. The TR with Improved Layout Characteristics
5.2. The QU with Improved Layout Characteristics
5.3. The HE with Improved Layout Characteristics
5.4. Comparative Discussion among Modular Structures
5.5. Manufacturability of These Structures
6. Discussion
7. Conclusions
- The dimension of the modular structure also has a significant change in the overall collision performance of the DHB structure. The SMCF of the three basic models is improved, among which TR-D2, QU-D2, and HE-D3 are significantly improved by 3.18%, 13.02%, and 5.23%, respectively.
- Compared with the original model, the SMCF of the improved modular DHB structure has been improved greatly, among which TR-5, QU-5, and HE-5 have the best performance, which has increased by 116.53%, 32.54%, and 78.9%, respectively.
- In the optimization process of modular filled structures, the axial crushing of the triangle element is better than that of the quadrilateral element and hexagon element.
- Appropriately adding units contributes to enhancing the structural durability. In the triangular improved modular model, reinforcing modularization at the edges enhances the mean crushing force. In the quadrangular improved modular model, the cross-shaped modular filling approach proves more conducive to enhancing energy absorption effects.
- In conclusion, compared with the traditional hollow DHBs, by innovatively proposing modular filled structures inside DHBs, the composite structures exhibit unique energy absorption characteristics and impact resistance characteristics, and it is practicable to select and match various filling methods based on their performance. Furthermore, future research will explore the cross arrangement of different modular unit cells to achieve superior energy absorption and crush characteristics. This study reveals the key characteristics of axial vehicle impact and addresses the limitations of previous research. It holds significant reference value for automotive engineers and scholars looking to delve deeper into the axial crash safety, platform modularization, and lightweight design of electric vehicles.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EA | Energy absorption |
SEA | Specific energy absorption |
MCF | Mean crushing force |
SMCF | Specific mean crushing force |
SCF | Specific crushing force |
PCF | Peak crushing force |
DHB | Double-hat beam |
TR | Triangular filled structure |
QU | Quadrilateral filled structure |
HE | Hexagonal filled structure |
TR-D1 | Triangular filled structure dimension 1 |
TR-D2 | Triangular filled structure dimension 2 |
TR-D3 | Triangular filled structure dimension 3 |
QU-D1 | Quadrilateral filled structure dimension 1 |
QU-D2 | Quadrilateral filled structure dimension 2 |
QU-D3 | Quadrilateral filled structure dimension 3 |
HE-D1 | Hexagonal filled structure dimension 1 |
HE-D2 | Hexagonal filled structure dimension 2 |
HE-D3 | Hexagonal filled structure dimension 3 |
TR-1 | Triangular filled structure section 1 |
TR-2 | Triangular filled structure section 2 |
TR-3 | Triangular filled structure section 3 |
TR-4 | Triangular filled structure section 4 |
TR-5 | Triangular filled structure section 5 |
QU-1 | Quadrilateral filled structure section 1 |
QU-2 | Quadrilateral filled structure section 2 |
QU-3 | Quadrilateral filled structure section 3 |
QU-4 | Quadrilateral filled structure section 4 |
QU-5 | Quadrilateral filled structure section 5 |
HE-1 | Hexagonal filled structure section 1 |
HE-2 | Hexagonal filled structure section 2 |
HE-3 | Hexagonal filled structure section 3 |
HE-4 | Hexagonal filled structure section 4 |
HE-5 | Hexagonal filled structure section 5 |
References
- Ding, S.; Sun, M.; Li, Y.; Ma, W.; Zhang, Z. Novel deployable panel structure integrated with thick origami and morphing bistable composite structures. Materials 2022, 15, 1942. [Google Scholar] [CrossRef]
- Wen, Z.; Li, M. Compressive properties of functionally graded bionic bamboo lattice structures fabricated by fdm. Materials 2021, 14, 4410. [Google Scholar] [CrossRef]
- Bi, G.; Yin, J.; Wang, Z.; Jia, Z. Micro fracture behavior of composite honeycomb sandwich structure. Materials 2020, 14, 135. [Google Scholar] [CrossRef]
- Sakaridis, E.; Karathanasopoulos, N.; Mohr, D. Machine-learning based prediction of crash response of tubular structures. Int. J. Impact Eng. 2022, 166, 104240. [Google Scholar] [CrossRef]
- Li, Q.Q.; Li, E.; Chen, T.; Wu, L.; Wang, G.Q.; He, Z.C. Improve the frontal crashworthiness of vehicle through the design of front rail. Thin-Walled Struct. 2021, 162, 107588. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Z.; Wang, X.; Zhou, W. Bending behavior of sandwich beam with tailored hierarchical honeycomb cores. Thin-Walled Struct. 2020, 157, 107001. [Google Scholar] [CrossRef]
- Xu, M.; Zhao, Z.; Wang, P.; Duan, S.; Lei, H.; Fang, D. Mechanical performance of bio-inspired hierarchical honeycomb metamaterials. Int. J. Solids Struct. 2022, 254, 111866. [Google Scholar] [CrossRef]
- Lu, B.; Shen, C.; Zhang, J.; Zheng, D.; Zhang, T. Study on energy absorption performance of variable thickness CFRP/aluminum hybrid square tubes under axial loading. Compos. Struct. 2021, 276, 114469. [Google Scholar] [CrossRef]
- Herakovich, C.T.; Aboudi, J.; Lee, S.W.; Strauss, E.A. Damage in composite laminates: Effects of transverse cracks. Mech. Mater. 1988, 7, 91–107. [Google Scholar] [CrossRef]
- Tsang, H.H.; Tse, K.M.; Chan, K.Y.; Lu, G.; Lau, A.K. Energy absorption of muscle-inspired hierarchical structure: Experimental investigation. Compos. Struct. 2019, 226, 111250. [Google Scholar] [CrossRef]
- Fan, H.; Luo, Y.; Yang, F.; Li, W. Approaching perfect energy absorption through structural hierarchy. Int. J. Eng. Sci. 2018, 130, 12–32. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Y.; Wang, J.; Jiang, F.; Wang, C.H. Crashworthiness design of novel hierarchical hexagonal columns. Compos. Struct. 2018, 194, 36–48. [Google Scholar] [CrossRef]
- Li, W.; Luo, Y.; Li, M.; Sun, F.; Fan, H. A more weight-efficient hierarchical hexagonal multi-cell tubular absorber. Int. J. Mech. Sci. 2018, 140, 241–249. [Google Scholar] [CrossRef]
- Liu, S.; Tong, Z.; Tang, Z.; Liu, Y.; Zhang, Z. Bionic design modification of non-convex multi-corner thin-walled columns for improving energy absorption through adding bulkheads. Thin-Walled Struct. 2015, 88, 70–81. [Google Scholar] [CrossRef]
- Tao, Y.; Li, W.; Wei, K.; Duan, S.; Wen, W.; Chen, L.; Fang, D. Mechanical properties and energy absorption of 3D printed square hierarchical honeycombs under in-plane axial compression. Compos. Part B Eng. 2019, 176, 107219. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Z.; Shi, C.; Zhou, W. Mechanical performance of vertex-based hierarchical vs square thin-walled multi-cell structure. Thin-Walled Struct. 2019, 134, 102–110. [Google Scholar] [CrossRef]
- Kim, C.H.; Mijar, A.R.; Arora, J.S. Development of simplified models for design and optimization of automotive structures for crashworthiness. Struct. Multidiscip. Optim. 2001, 22, 307–321. [Google Scholar] [CrossRef]
- Li, Q.; Wu, L.; Hu, L.; Li, E.; Zhong, Y.; Song, K. Bionic polycellular structures for axial compression. Int. J. Mech. Sci. 2022, 226, 107428. [Google Scholar] [CrossRef]
- Li, Q.; Wu, L.; Hu, L.; Li, E.; Zou, T.; Liu, X. Parametric analysis on axial compression performance of bio-inspired porous lattice structures. Thin-Walled Struct. 2023, 182, 110223. [Google Scholar] [CrossRef]
- Mayer, R.R.; Lin, C.H.; Wang, J.T. Math-Based Performance Evaluation of an Experimental Car: Frontal Impact Crashworthiness. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, QC, Canada, 29 September 2002; Volume 36223, pp. 1105–1109. [Google Scholar]
- Duan, L.; Xiao, N.; Hu, Z.; Li, G.; Cheng, A. An efficient lightweight design strategy for body-in-white based on implicit parameterization technique. Struct. Multidiscip. Optim. 2017, 55, 1927–1943. [Google Scholar] [CrossRef]
- Sun, G.; Wang, X.; Fang, J.; Pang, T.; Li, Q. Parallelized optimization design of bumper systems under multiple low-speed impact loads. Thin-Walled Struct. 2021, 167, 108197. [Google Scholar] [CrossRef]
- Sun, G.; Pang, T.; Fang, J.; Li, G.; Li, Q. Parameterization of criss-cross configurations for multiobjective crashworthiness optimization. Int. J. Mech. Sci. 2017, 124, 145–157. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Li, Z.; Shi, C. On the crashworthiness of bio-inspired hexagonal prismatic tubes under axial compression. Int. J. Mech. Sci. 2020, 186, 105893. [Google Scholar] [CrossRef]
- Sun, G.; Xu, F.; Li, G.; Li, Q. Crashing analysis and multiobjective optimization for thin-walled structures with functionally graded thickness. Int. J. Impact Eng. 2014, 64, 62–74. [Google Scholar] [CrossRef]
- Li, Y.; Lin, Z.; Jiang, A.; Chen, G. Use of high strength steel sheet for lightweight and crashworthy car body. Mater. Des. 2003, 24, 177–182. [Google Scholar] [CrossRef]
- Zhang, Y.; Lai, X.; Zhu, P.; Wang, W. Lightweight design of automobile component using high strength steel based on dent resistance. Mater. Des. 2006, 27, 64–68. [Google Scholar] [CrossRef]
- Deb, A.; Mahendrakumar, M.S.; Chavan, C.; Karve, J.; Blankenburg, D.; Storen, S. Design of an aluminium-based vehicle platform for front impact safety. Int. J. Impact Eng. 2004, 30, 1055–1079. [Google Scholar] [CrossRef]
- Cui, X.; Zhang, H.; Wang, S.; Zhang, L.; Ko, J. Design of lightweight multi-material automotive bodies using new material performance indices of thin-walled beams for the material selection with crashworthiness consideration. Mater. Des. 2011, 32, 815–821. [Google Scholar] [CrossRef]
- Liu, Q.; Lin, Y.; Zong, Z.; Sun, G.; Li, Q. Lightweight design of carbon twill weave fabric composite body structure for electric vehicle. Compos. Struct. 2013, 97, 231–238. [Google Scholar] [CrossRef]
- Duan, S.; Tao, Y.; Han, X.; Yang, X.; Hou, S.; Hu, Z. Investigation on structure optimization of crashworthiness of fiber reinforced polymers materials. Compos. Part B Eng. 2014, 60, 471–478. [Google Scholar] [CrossRef]
- Hesse, S.H.; Lukaszewicz, D.J.; Duddeck, F. A method to reduce design complexity of automotive composite structures with respect to crashworthiness. Compos. Struct. 2015, 129, 236–249. [Google Scholar] [CrossRef]
- Li, Q.; Wu, L.; Hu, L.; Miao, X.; Liu, X.; Zou, T. A sinusoidal beam lattice structure with negative Poisson’s ratio property. Aerosp. Sci. Technol. 2023, 133, 108103. [Google Scholar] [CrossRef]
- Nia, A.A.; Parsapour, M. Comparative analysis of energy absorption capacity of simple and multi-cell thin-walled tubes with triangular, square, hexagonal and octagonal sections. Thin-Walled Struct. 2014, 74, 155–165. [Google Scholar]
- San Ha, N.; Pham, T.M.; Hao, H.; Lu, G. Energy absorption characteristics of bio-inspired hierarchical multi-cell square tubes under axial crushing. Int. J. Mech. Sci. 2021, 201, 106464. [Google Scholar]
- Wu, S.; Zheng, G.; Sun, G.; Liu, Q.; Li, G.; Li, Q. On design of multi-cell thin-wall structures for crashworthiness. Int. J. Impact Eng. 2016, 88, 102–117. [Google Scholar] [CrossRef]
- Sun, G.; Deng, M.; Zheng, G.; Li, Q. Design for cost performance of crashworthy structures made of high strength steel. Thin-Walled Struct. 2019, 138, 458–472. [Google Scholar] [CrossRef]
- Zorzetto, L.; Ruffoni, D. Re-entrant inclusions in cellular solids: From defects to reinforcements. Compos. Struct. 2017, 176, 195–204. [Google Scholar] [CrossRef]
- Qi, C.; Sun, Y.; Yang, S. A comparative study on empty and foam-filled hybrid material double-hat beams under lateral impact. Thin-Walled Struct. 2018, 129, 327–341. [Google Scholar] [CrossRef]
- Li, Q.; Wu, L.; Hu, L.; Chen, T.; Zou, T.; Li, E. Axial compression performance of a bamboo-inspired porous lattice structure. Thin-Walled Struct. 2022, 180, 109803. [Google Scholar] [CrossRef]
- Zhang, W.; Yin, S.; Yu, T.X.; Xu, J. Crushing resistance and energy absorption of pomelo peel inspired hierarchical honeycomb. Int. J. Impact Eng. 2019, 125, 163–172. [Google Scholar] [CrossRef]
- Yin, H.; Wen, G.; Liu, Z.; Qing, Q. Crashworthiness optimization design for foam-filled multi-cell thin-walled structures. Thin-Walled Struct. 2014, 75, 8–17. [Google Scholar] [CrossRef]
MCF (kN) | SEA (J/kg) | SMCF (kN/kg) | Def. (mm) | PCF (kN) | SM (kg) | EA (J) | |
---|---|---|---|---|---|---|---|
Simulation | 191.86 | 11,543.98 | 108.46 | 106.44 | 260.52 | 1.769 | 20,421.3 |
Test | 191.97 | 11,612.9 | 108.52 | 107.01 | 268.80 | 1.769 | 20,543.3 |
Models | J (mm) | H (mm) | N | M | Length (mm) | Width (mm) | Height (mm) |
---|---|---|---|---|---|---|---|
TR | 5.85 | 3.51 | 31 | 23 | 98.49 | 78.31 | 350 |
QU | 4.15 | 4.00 | 23 | 17 | 98.49 | 78.31 | 350 |
HE | 6.95 | 3.79 | 15 | 10 | 98.49 | 78.31 | 350 |
MCF (kN) | SEA (J/kg) | SMCF (kN/kg) | SCF (%) | SM (kg) | PCF (kN) | Def. (mm) | EA (J) | |
---|---|---|---|---|---|---|---|---|
TR | 214.99 | 10,922.2 | 117.35 | 81.23 | 1.832 | 264.66 | 93.07 | 20,009.4 |
QU | 208.48 | 11,673.2 | 120.03 | 78.84 | 1.737 | 264.42 | 97.26 | 20,276.3 |
HE | 206.92 | 11,684.6 | 119.81 | 73.27 | 1.730 | 282.41 | 97.52 | 20,179.3 |
DHB | 191.86 | 11,543.98 | 108.46 | 73.64 | 1.769 | 260.52 | 106.44 | 20,421.3 |
Model | J (mm) | H (mm) | N | M | Length (mm) | Width (mm) | Height (mm) |
---|---|---|---|---|---|---|---|
TR | 5.85 | 3.51 | 31 | 23 | 98.49 | 78.31 | 350 |
TR-D1 | 6.59 | 3.77 | 27 | 19 | 98.49 | 78.31 | 350 |
TR-D2 | 7.54 | 4.37 | 23 | 17 | 98.49 | 78.31 | 350 |
TR-D3 | 8.88 | 4.92 | 19 | 15 | 98.49 | 78.31 | 350 |
QU | 4.15 | 4.00 | 23 | 17 | 98.49 | 78.31 | 350 |
QU-D1 | 5.61 | 5.47 | 16 | 12 | 98.49 | 78.31 | 350 |
QU-D2 | 6.54 | 7.04 | 12 | 10 | 98.49 | 78.31 | 350 |
QU-D3 | 9.81 | 9.85 | 8 | 6 | 98.49 | 78.31 | 350 |
HE | 6.95 | 3.79 | 15 | 10 | 98.49 | 78.31 | 350 |
HE-D1 | 8.70 | 4.99 | 11 | 8 | 98.49 | 78.31 | 350 |
HE-D2 | 11.19 | 5.79 | 9 | 6 | 98.49 | 78.31 | 350 |
HE-D3 | 15.66 | 7.04 | 7 | 4 | 98.49 | 78.31 | 350 |
Model | SM (kg) | PCF (kN) | Def. (mm) | EA (J) | MCF (kN) | SEA (J/kg) | SMCF (kN/kg) | SCF (%) |
---|---|---|---|---|---|---|---|---|
TR | 1.832 | 264.66 | 93.07 | 20,009.4 | 214.99 | 10,922.2 | 117.35 | 81.23 |
TR-D1 | 1.804 | 244.57 | 107.50 | 20,096.8 | 186.95 | 11,140.13 | 103.63 | 76.44 |
TR-D2 | 1.799 | 251.20 | 101.24 | 20,403.3 | 201.53 | 11,341.47 | 112.02 | 80.23 |
TR-D3 | 1.795 | 248.82 | 101.96 | 20,054.9 | 196.69 | 11,172.66 | 109.58 | 79.05 |
QU | 1.737 | 264.42 | 97.26 | 20,276.3 | 208.48 | 11,673.2 | 120.03 | 78.84 |
QU-D1 | 1.728 | 253.30 | 103.61 | 20,877.4 | 201.50 | 12,081.83 | 116.61 | 79.55 |
QU-D2 | 1.718 | 253.04 | 98.32 | 20,704.1 | 210.59 | 12,051.28 | 122.58 | 83.22 |
QU-D3 | 1.699 | 242.65 | 101.98 | 20,799.7 | 203.96 | 12,242.32 | 120.05 | 84.06 |
HE | 1.727 | 282.41 | 97.52 | 20,179.3 | 206.92 | 11,684.60 | 119.81 | 73.27 |
HE-D1 | 1.710 | 280.14 | 105.31 | 20,365.5 | 193.39 | 11,909.65 | 113.09 | 69.03 |
HE-D2 | 1.709 | 247.47 | 105.57 | 20,104.8 | 190.44 | 11,764.07 | 111.43 | 76.95 |
HE-D3 | 1.682 | 245.38 | 105.61 | 20,273.4 | 191.96 | 12,053.15 | 114.13 | 78.23 |
SM (kg) | PCF (kN) | Def. (mm) | EA (J) | MCF (kN) | SEA (J/kg) | SMCF (kN/kg) | SCF (%) | |
---|---|---|---|---|---|---|---|---|
TR | 1.832 | 264.66 | 93.07 | 20,009.4 | 214.99 | 10,922.2 | 117.35 | 81.23 |
TR-1 | 2.100 | 416.86 | 58.01 | 19,795.5 | 341.24 | 9426.4 | 162.50 | 81.86 |
TR-2 | 2.205 | 438.50 | 52.57 | 20,031.8 | 381.05 | 9084.7 | 172.81 | 86.90 |
TR-3 | 2.154 | 383.85 | 64.29 | 20,114.5 | 312.88 | 9338.2 | 145.26 | 81.51 |
TR-4 | 2.296 | 439.10 | 53.10 | 19,990.0 | 376.49 | 8667.7 | 163.98 | 85.74 |
TR-5 | 3.536 | 982.34 | 22.98 | 19,083.7 | 830.41 | 5397.0 | 234.84 | 84.53 |
SM (kg) | PCF (kN) | Def. (mm) | EA (J) | MCF (kN) | SEA (J/kg) | SMCF (kN/kg) | SCF (%) | |
---|---|---|---|---|---|---|---|---|
QU | 1.737 | 264.42 | 97.26 | 20,276.3 | 208.48 | 11,673.20 | 120.03 | 78.84 |
QU-1 | 2.165 | 344.68 | 77.04 | 20,690.5 | 268.57 | 9556.81 | 124.05 | 77.92 |
QU-2 | 2.468 | 387.49 | 69.48 | 20,456.2 | 294.43 | 8288.57 | 119.30 | 75.98 |
QU-3 | 2.032 | 335.48 | 73.31 | 20,469.8 | 279.23 | 10,073.72 | 137.42 | 83.23 |
QU-4 | 2.274 | 399.64 | 59.74 | 19,999.3 | 334.76 | 8794.77 | 147.21 | 83.77 |
QU-5 | 3.161 | 618.65 | 43.94 | 19,968.2 | 454.40 | 6317.05 | 143.75 | 73.45 |
SM (kg) | PCF (kN) | Def. (mm) | EA (J) | MCF (kN) | SEA (J/kg) | SMCF (kN/kg) | SCF (%) | |
---|---|---|---|---|---|---|---|---|
HE | 1.727 | 282.41 | 97.52 | 20,179.3 | 206.92 | 11,684.60 | 119.81 | 73.27 |
HE-1 | 2.283 | 517.91 | 58.80 | 22,924.4 | 389.89 | 10,041.35 | 170.78 | 75.28 |
HE-2 | 2.560 | 504.26 | 69.90 | 22,156.4 | 317.00 | 8654.84 | 123.83 | 62.86 |
HE-3 | 1.901 | 349.11 | 79.62 | 21,308.1 | 267.63 | 11,208.89 | 140.78 | 76.66 |
HE-4 | 2.022 | 412.51 | 58.54 | 20,079.2 | 342.98 | 9930.37 | 169.62 | 83.14 |
HE-5 | 2.36 | 503.01 | 43.79 | 19,742.0 | 450.86 | 8365.25 | 191.04 | 89.63 |
SM (kg) | PCF (kN) | Def. (mm) | EA (J) | MCF (kN) | SEA (J/kg) | SMCF (kN/kg) | SCF (%) | ||
---|---|---|---|---|---|---|---|---|---|
DHB | 1.769 | 260.52 | 106.44 | 20,421.3 | 191.86 | 11,543.98 | 108.46 | 73.65 | |
TR | 1.832 | 264.66 | 93.07 | 20,009.4 | 214.99 | 10,922.20 | 117.35 | 81.23 | |
TR-2 | 2.205 | 438.50 | 52.57 | 20,031.8 | 381.05 | 90,84.70 | 172.81 | 86.90 | |
TR-5 | 3.536 | 982.34 | 22.98 | 19,083.7 | 830.41 | 5397.00 | 234.85 | 84.53 | |
QU | 1.737 | 264.42 | 97.26 | 20,276.3 | 208.48 | 11,673.20 | 120.03 | 78.84 | |
QU-3 | 2.032 | 335.48 | 73.31 | 20,469.8 | 279.23 | 10,073.7 | 137.42 | 83.23 | |
QU-5 | 3.161 | 618.65 | 43.94 | 19,968.2 | 454.40 | 6317.05 | 143.75 | 73.45 | |
HE | 1.730 | 282.41 | 97.52 | 20,179.3 | 206.92 | 11,684.60 | 119.81 | 73.27 | |
HE-1 | 2.283 | 517.91 | 58.797 | 22,924.4 | 389.89 | 10,041.40 | 170.78 | 75.28 | |
HE-5 | 2.36 | 503.01 | 43.787 | 19,742.0 | 450.86 | 8365.25 | 191.04 | 89.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, X.; Hu, L.; Li, Q.; Tang, Y. Axial Crushing and Energy Absorption Integrated Design of Modular Filled Double-Hat Beam Composite Structures. Materials 2024, 17, 4302. https://doi.org/10.3390/ma17174302
Yi X, Hu L, Li Q, Tang Y. Axial Crushing and Energy Absorption Integrated Design of Modular Filled Double-Hat Beam Composite Structures. Materials. 2024; 17(17):4302. https://doi.org/10.3390/ma17174302
Chicago/Turabian StyleYi, Xiaojian, Lin Hu, Qiqi Li, and Yong Tang. 2024. "Axial Crushing and Energy Absorption Integrated Design of Modular Filled Double-Hat Beam Composite Structures" Materials 17, no. 17: 4302. https://doi.org/10.3390/ma17174302
APA StyleYi, X., Hu, L., Li, Q., & Tang, Y. (2024). Axial Crushing and Energy Absorption Integrated Design of Modular Filled Double-Hat Beam Composite Structures. Materials, 17(17), 4302. https://doi.org/10.3390/ma17174302