Theoretical Study of Co-Doping Effects with Different Ions on the Multiferroic Properties of BiFeO3 Nanoparticles
Abstract
1. Introduction
2. The Model
3. Numerical Results and Discussion
3.1. Size Dependence of Magnetization and Band Gap Energy in BFO
3.2. Co-Doping Substitution Effect on the Magnetization and Polarization in BFO NPs
3.3. Co-Doping at the Bi Site
3.4. Co-Doping at the Fe Site
3.5. Co-Doping at Both Bi and Fe Sites
3.6. Co-Doping Substitution Effect on the Band Gap Energy in BFO NPs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fiebig, M.; Lottermoser, T.; Meier, D.; Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 2016, 1, 16046. [Google Scholar] [CrossRef]
- Spaldin, N.A.; Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 2019, 18, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Kumari, B.; Mandal, P.R.; Nath, T.K. Magnetic, magnetocapacitance and dielectric properties of BiFeO3 nanoceramics. Adv. Mater. Lett. 2014, 5, 84–88. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, H.; Ma, Z.; Prasertchoung, S.; Wuttig, M.; Droopad, R.; Yu, J.; Eisenbeiser, K.; Ramesh, R. Epitaxial BiFeO3 thin films on Si. Appl. Phys. Lett. 2004, 85, 2574–2576. [Google Scholar] [CrossRef]
- Ueda, K.; Tabata, H.; Kawai, T. Coexistence of ferroelectricity and ferromagnetism in BiFeO3-BaTiO3 thin films at room temperature. Appl. Phys. Lett. 1999, 75, 555–557. [Google Scholar] [CrossRef]
- Preethi, A.J.; Ragam, M. Effect of doping in multiferroic BiFeO3: A review. J. Adv. Dielectr. 2021, 11, 2130001. [Google Scholar] [CrossRef]
- Pugaczowa-Michalska, M.; Kaczkowski, J. First-principles study of structural, electronic, and ferroelectric properties of rare-earth-doped BiFeO3. J. Mater. Sci. 2015, 50, 6227–6235. [Google Scholar] [CrossRef]
- Gebhardt, J.; Rappe, A.M. Doping of BiFeO3: A comprehensive study on substitutional doping. Phys. Rev. B 2018, 98, 125202. [Google Scholar] [CrossRef]
- Lu, S.; Li, C.; Zhao, Y.F.; Gong, Y.Y.; Niu, L.Y.; Liu, X.J.; Wang, T. Tunable magnetism of 3d transition metal doped BiFeO3. J. Magn. Magn. Mater. 2017, 439, 57–66. [Google Scholar] [CrossRef]
- Dhir, G.; Lotey, G.S.; Uniyal, P.; Verma, N.K. Size-dependent magnetic and dielectric properties of Tb-doped BiFeO3 nanoparticles. J. Mater. Sci. Mater. Electr. 2013, 24, 4386–4392. [Google Scholar] [CrossRef]
- Akhtar, M.; Saba, S.; Arif, S.; Mustafa, G.M.; Khalid, A.; Ali, G.; Atiq, S. Efficient magneoelectric dispersion in Ni and Co co-doped BiFeO3 multiferroics. Physica B 2021, 602, 412572. [Google Scholar] [CrossRef]
- Kebede, M.T.; Dillu, V.; Devi, S.; Chauhan, S. A comparative investigation of structural, magnetic and photocatalytic properties of pure, Ce-Ni and Cd-Ni co-doped BiFeO3 nanoparticles. Mater. Sci. Eng. B 2024, 301, 117188. [Google Scholar] [CrossRef]
- Kebede, M.T.; Devi, S.; Tripathi, B.; Chauhan, S.; Dillu, V. Structural transition and enhanced magnetic, optical and photocatalytic properties of novel Ce-Ni co-doped BiFeO3 nanoparticles. Mater. Sci. Eng. B 2022, 152, 107086. [Google Scholar] [CrossRef]
- Li, B.; Wang, C.; Liu, W.; Ye, M.; Wang, N. Multiferroic properties of La and Mn co-doped BiFeO3 nanofibers by sol-gel and electrospinning technique. Mater. Lett. 2013, 90, 45–48. [Google Scholar] [CrossRef]
- Akhtar, M.N.; Yousaf, M.; Baqir, M.A.; Batoo, K.M.; Khan, M.A. Pr-Co co-doped BiFeO3 multiferroic nanomaterials for absorber applications. Ceram. Int. 2021, 47, 2144–2154. [Google Scholar] [CrossRef]
- Yuan, X.; Shi, L.; Zhao, J.; Zhou, S.; Guo, J.; Pan, S.; Miao, X.; Wu, L. Tuning Ferroelectric, Dielectric, and Magnetic Properties of BiFeO3 Ceramics by Ca and Pb Co-Doping. Phys. Status Sol. B 2019, 256, 1800499. [Google Scholar] [CrossRef]
- Dhanalakshmi, B.; Sravani, G.M.; Suresh, J.; Reddy, P.V.S.S.S.N.; Rao, K.E.; Jyothula, S.; Beera, C.S. Impact of co-doping with Mn and Co/Mn on the structural, microstructural, dielectric, impedance, and magnetic characteristics of multiferroic bismuth ferrite nanoparticles. Appl. Phys. A 2023, 129, 452. [Google Scholar] [CrossRef]
- Marzouki, A.; Loyau, V.; Gemeiner, P.; Bessais, L.; Dkhil, B.; Megriche, A. Increase of magnetic and magnetoelectric properties in Co/Mn co-doped BiFeO3 multiferroic. J. Magn. Magn. Mater. 2020, 498, 166137. [Google Scholar] [CrossRef]
- Banu, I.B.S.; Lakshmi, S.D. Simultaneous enhancement of room temperature multiferroic properties of BiFeO3 by Nd doping at Bi site and Co doping at Fe site. J. Mater. Sci. Mater. Electron. 2017, 28, 16044–16052. [Google Scholar] [CrossRef]
- Jose, P.J.; Rathod, U.; Savaliya, C.; Jethva, S.; Panchasara, A.; Katba, S.; Keshvani, M.; Vagadia, M.; Ravalia, A. Studies on multiferroic Behavior of Y-Mn Co-Doped Bi0.9La0.1FeO3. J. Electron. Mater. 2022, 51, 6689–6698. [Google Scholar] [CrossRef]
- Razad, P.M.; Saravanakumar, K.; Reddy, V.R.; Choudhary, R.J.; Mahalakshmi, K. The study on Ni and Ti-co-doped bismuth ferrite BiFeO3 nanorods: Quenching of magnetism. J. Mater. Sci.Mater. Electron. 2022, 33, 260–269. [Google Scholar] [CrossRef]
- Song, S.; Jia, L.; Wang, S.; Zheng, D.; Liu, H.; Bo, F.; Kong, Y.; Xu, J. Enhancement of ferromagnetism in a multiferroic La-Co co-doped BiFeO3 thin films. J. Phys. D Appl. Phys. 2022, 55, 355002. [Google Scholar] [CrossRef]
- Rhaman, M.M.; Matin, M.A.; Hossain, M.N.; Mozahid, F.A.; Hakim, M.A.; Rizvi, M.H.; Islam, M.F. Bandgap Tuning of Sm and Co Co-doped BiFeO3 Nanoparticles for Photovoltaic Application. J. Electron. Mater. 2018, 47, 6954–6958. [Google Scholar] [CrossRef]
- Xu, Y.; Deng, C.; Wang, X. Bandgap modulation and phase boundary region of MF Gd, Co co-doped bismuth ferrite BiFeO3 thin film. AIP Adv. 2023, 13, 115004. [Google Scholar] [CrossRef]
- Gupta, S.; Feng, L.J.; Medwal, R.; Vas, J.V.; Mishra, M.; Deen, G.R.; Paul, L.C.K.; Rawat, R.S. Spin-casted (Gd-Zn) co-doped BiFeO3 thin films for sustainable oxide-electronics. Mater. Sci. Semicond. Proc. 2021, 132, 105902. [Google Scholar] [CrossRef]
- Xu, X.-L.; Wang, J.; Li, Y.; Xiong, B.-T.; Yang, H.-P.; Mao, W.-W.; Li, X. Enhanced Multiferroic Properties in Er and Mn Co-Doped bismuth ferrite BiFeO3 Nanoparticles. J. Supercond. Nov. Magn. 2022, 35, 1961–1966. [Google Scholar] [CrossRef]
- Rong, Q.-Y.; Xiao, W.-Z.; Xiao, G.; Hu, A.-M.; Wang, J.J. Magnetic properties in BiFeO3 doped with Cu and Zn first-principles investigation. J. Alloys Compd. 2016, 674, 463–469. [Google Scholar] [CrossRef]
- Zhou, Y.; Fan, Y.; Wang, Z.; Mao, W.; Weng, Y.; Zhang, J.; Pu, Y.; Yang, J.; Li, X. Effect of non-metallic X(X=F, N, S) and Cr co-doping on properties of BiFeO3: A first-principles study. Phys. Lett. A 2019, 383, 383–388. [Google Scholar] [CrossRef]
- Tariq, M.; Shaari, A.; Chaudhary, K.; Ahmed, R.; Jalil, M.A.; Ismail, F.D. Magnetoelectric, and dielectric based switching properties of co-doped BiFeO3 for low energy memory technology: A first-principles study. Physica B 2023, 650, 414489. [Google Scholar] [CrossRef]
- Ravindran, P.; Vidya, R.; Kjekshus, A.; Fjellvag, H.; Eriksson, O. Theoretical investigation of magnetoelectric behavior in BiFeO3. Phys. Rev. B 2006, 74, 224412. [Google Scholar] [CrossRef]
- Blinc, R.; Zeks, B. Soft Modes in Ferroelectric and Antiferroelectrics; North-Holland: Amsterdam, The Netherlands, 1974. [Google Scholar]
- Pirc, R.; Blinc, R. Off-center Ti model of barium titanate. Phys. Rev. B 2004, 70, 134107. [Google Scholar] [CrossRef]
- Tserkovnikov, Y.A. Decoupling of chains of equations for two-time Green’s functions. Theor. Math. Phys. 1971, 7, 250–261. [Google Scholar] [CrossRef]
- Nagayev, E.I. Spin Polaron Theory for Magnetic Semiconductors with Narrow Bands. Phys. Stat. Sol. B 1974, 65, 11–60. [Google Scholar] [CrossRef]
- Yaakob, M.K.; Zulkafli, N.M.A.; Kasim, M.F.; Mamat, M.H.; Mohamad, A.A.; Lu, L.; Yahya, M.Z.A. Structural phase instability, mixed-phase, and energy band gap change in BiFeO3 under lattice strain effect from first-principles investigation. Ceram. Int. 2021, 47, 12592–12599. [Google Scholar] [CrossRef]
- Kumar, M.; Sati, P.C.; Kumar, A.; Sahni, M.; Negi, P.; Singh, H.; Chauhan, S.; Chaurasia, S.K. Recent advances on magnetoelectric coupling in BiFeO3: Technological achievements and challenges. Mater. Today Proc. 2022, 49, 3046–3049. [Google Scholar] [CrossRef]
- Carranza-Celis, D.; Cardona-Rodriguez, A.; Narvaez, J.; Moscoso-Londono, O.; Muraca, D.; Knobel, M.; Ornelas-Soto, N.; Reiber, A.; Ramirez, J.G. Control of Multiferroic properties in BiFeO3 nanoparticles. Sci. Rep. 2019, 9, 3182. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, E.R.; Carranza-Celis, D.; Vergara-Duran, N.; da Cruz, A.S.E.; Londono, O.M.; Beron, F.; Knobel, M.; Reiber, A.; Muraca, D.; Ramirez, J.G.; et al. Resolving magnetic contributions in BiFeO3 nanoparticles using First order reversal curves. J. Magn. Magn. Mater. 2022, 556, 169409. [Google Scholar] [CrossRef]
- Wani, W.A.; Kundu, S.; Ramaswamy, K.; Venkataraman, B.H. Optimizing phase formation of BiFeO3 and Mn doped BiFeO3 nanoceramics via thermal treatment using citrate precursor method. SN Appl. Sci. 2020, 2, 1969. [Google Scholar] [CrossRef]
- Lima, A.F. Optical properties, energy band gap and the charge carriers–effective masses of the R3c BiFeO3 magnetoelectric compound. J. Phys. Chem. Solids 2020, 144, 109484. [Google Scholar] [CrossRef]
- Mocherla, P.; Karthik, C.; Ubic, R.; Rao, M.S.R.; Sudakar, C. Tunable Band-Gap in BiFeO3 Nanoparticles: The Role of Microstrain and Oxygen Defects. Appl. Phys. Lett. 2013, 103, 022910. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, M. Band gap tuning and optical properties of BiFeO3 nanoparticles. Mater. Today Proc. 2020, 28, 168–171. [Google Scholar] [CrossRef]
- Sando, D.; Carretero, C.; Grisolia, M.N.; Barthelemy, A.; Nagarajan, V.; Bibes, M. Revisiting the Optical Band Gap in Epitaxial BiFeO3 Thin Films. Adv. Opt. Mater. 2018, 6, 1700836. [Google Scholar] [CrossRef]
- Wang, T.; Wang, X.-L.; Song, S.-H.; Ma, Q. Effect of rare-earth Nd/Sm doping on the structural and multiferroic properties of BiFeO3 ceramics prepared by spark plasma sintering, Bi1−xAxFeO3 (A = Nd/Sm; x = 0, 0.05, 0.10, 0.15 and 0.20). Ceram. Int. 2020, 46, 15228–15235. [Google Scholar] [CrossRef]
- Bismibanu, A.; Vanga, P.R.; Alagar, M.; Selvalakshmi, T.; Banu, I.B.S.; Ashok, M. Impact of (Pr, Dy) Co-doping at Bi Site on Optical and Multiferroic Properties of BiFeO3 Ceramics Prepared by Sonochemical Method. Semiconductors 2021, 55, 914–921. [Google Scholar] [CrossRef]
- Wang, T.; Xu, T.; Gao, S.; Song, S.-H. Effect of Nd and Nb co-doping on the structural, magnetic and optical properties of multiferroic BiFeO3 nanoparticles prepared by sol-gel method. Ceram. Int. 2017, 43, 4489–4495. [Google Scholar] [CrossRef]
- Lakshmi, S.D.; Banu, I.B.S. Multiferroism and magnetoelectric coupling in single-phase Yb and X (X=Nb, Mn, Mo) co-doped BiFeO3 ceramics. J. Sol-Gel Sci. Technol. 2019, 89, 713–721. [Google Scholar] [CrossRef]
- Ramachandran, B.; Rao, M.S.R. Chemical pressure effect on optical properties in multiferroic bulk BiFeO3. J. Appl. Phys. 2012, 112, 073516. [Google Scholar] [CrossRef]
- Irfan, S.; Shen, Y.; Rizwan, S.; Wang, H.C.; Khan, S.B.; Nan, C.W. Band-gap engineering and enhanced photocatalytic activity of Sm and Mn doped BiFeO3 nanoparticles. J. Am. Ceram Soc. 2017, 100, 31–40. [Google Scholar] [CrossRef]
- Zhu, Y.; Quan, C.; Ma, Y.; Wang, Q.; Mao, W.; Wang, X.; Huang, W. Efect of Eu, Mn co-doping on structural, optical and magnetic properties of BiFeO3 nanoparticles. Mater. Sci. Semicond. Process 2017, 57, 178–184. [Google Scholar] [CrossRef]
- Vishwakarma, A.K.; Tripathi, P.; Srivastava, A.; Sinha, A.S.K.; Srivastava, O.N. Band gap engineering of Gd and Co doped BiFeO3 and their application in hydrogen production through photoelectrochemical route. Int. J. Hydrogen Energy 2017, 42, 22677–22686. [Google Scholar] [CrossRef]
- Ahmad, T.; Jindal, K.; Tomar, M.; Jha, P.K. Effect of co-doping of rare earth elements and Cr on multiferroic, optical and photocatalytic properties of BiFeO3. Mater. TodayCommun. 2023, 37, 107516. [Google Scholar] [CrossRef]
- Dong, H.; Ke, L.; Hui, X.; Mao, J.; Du, H.; Yuan, W. Ternary phase diagram and dielectric behavior of BiFeO3-BaTiO3-SrTiO3 solid solutions. Scripta Mater. 2024, 244, 116028. [Google Scholar] [CrossRef]
- Shankar, S.; Maurya, I.; Raj, A.; Singh, S.; Thakur, P.; Jayasimhadri, M. Dielectric and tunable ferroelectric properties in BiFeO3-BiCoO3-BaTiO3 ternary compound. Appl. Phys. A 2020, 126, 686. [Google Scholar] [CrossRef]
- Pang, D.; He, C.; Long, X. Multiferroic ternary solid solution system of BiFeO3-NdFeO3-PbTiO3. J. Alloys Compd. 2017, 709, 16–23. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apostolov, A.T.; Apostolova, I.N.; Wesselinowa, J.M. Theoretical Study of Co-Doping Effects with Different Ions on the Multiferroic Properties of BiFeO3 Nanoparticles. Materials 2024, 17, 4298. https://doi.org/10.3390/ma17174298
Apostolov AT, Apostolova IN, Wesselinowa JM. Theoretical Study of Co-Doping Effects with Different Ions on the Multiferroic Properties of BiFeO3 Nanoparticles. Materials. 2024; 17(17):4298. https://doi.org/10.3390/ma17174298
Chicago/Turabian StyleApostolov, Angel T., Iliana N. Apostolova, and Julia M. Wesselinowa. 2024. "Theoretical Study of Co-Doping Effects with Different Ions on the Multiferroic Properties of BiFeO3 Nanoparticles" Materials 17, no. 17: 4298. https://doi.org/10.3390/ma17174298
APA StyleApostolov, A. T., Apostolova, I. N., & Wesselinowa, J. M. (2024). Theoretical Study of Co-Doping Effects with Different Ions on the Multiferroic Properties of BiFeO3 Nanoparticles. Materials, 17(17), 4298. https://doi.org/10.3390/ma17174298