Theoretical Study of Co-Doping Effects with Different Ions on the Multiferroic Properties of BiFeO3 Nanoparticles
Abstract
:1. Introduction
2. The Model
3. Numerical Results and Discussion
3.1. Size Dependence of Magnetization and Band Gap Energy in BFO
3.2. Co-Doping Substitution Effect on the Magnetization and Polarization in BFO NPs
3.3. Co-Doping at the Bi Site
3.4. Co-Doping at the Fe Site
3.5. Co-Doping at Both Bi and Fe Sites
3.6. Co-Doping Substitution Effect on the Band Gap Energy in BFO NPs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fiebig, M.; Lottermoser, T.; Meier, D.; Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 2016, 1, 16046. [Google Scholar] [CrossRef]
- Spaldin, N.A.; Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 2019, 18, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Kumari, B.; Mandal, P.R.; Nath, T.K. Magnetic, magnetocapacitance and dielectric properties of BiFeO3 nanoceramics. Adv. Mater. Lett. 2014, 5, 84–88. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, H.; Ma, Z.; Prasertchoung, S.; Wuttig, M.; Droopad, R.; Yu, J.; Eisenbeiser, K.; Ramesh, R. Epitaxial BiFeO3 thin films on Si. Appl. Phys. Lett. 2004, 85, 2574–2576. [Google Scholar] [CrossRef]
- Ueda, K.; Tabata, H.; Kawai, T. Coexistence of ferroelectricity and ferromagnetism in BiFeO3-BaTiO3 thin films at room temperature. Appl. Phys. Lett. 1999, 75, 555–557. [Google Scholar] [CrossRef]
- Preethi, A.J.; Ragam, M. Effect of doping in multiferroic BiFeO3: A review. J. Adv. Dielectr. 2021, 11, 2130001. [Google Scholar] [CrossRef]
- Pugaczowa-Michalska, M.; Kaczkowski, J. First-principles study of structural, electronic, and ferroelectric properties of rare-earth-doped BiFeO3. J. Mater. Sci. 2015, 50, 6227–6235. [Google Scholar] [CrossRef]
- Gebhardt, J.; Rappe, A.M. Doping of BiFeO3: A comprehensive study on substitutional doping. Phys. Rev. B 2018, 98, 125202. [Google Scholar] [CrossRef]
- Lu, S.; Li, C.; Zhao, Y.F.; Gong, Y.Y.; Niu, L.Y.; Liu, X.J.; Wang, T. Tunable magnetism of 3d transition metal doped BiFeO3. J. Magn. Magn. Mater. 2017, 439, 57–66. [Google Scholar] [CrossRef]
- Dhir, G.; Lotey, G.S.; Uniyal, P.; Verma, N.K. Size-dependent magnetic and dielectric properties of Tb-doped BiFeO3 nanoparticles. J. Mater. Sci. Mater. Electr. 2013, 24, 4386–4392. [Google Scholar] [CrossRef]
- Akhtar, M.; Saba, S.; Arif, S.; Mustafa, G.M.; Khalid, A.; Ali, G.; Atiq, S. Efficient magneoelectric dispersion in Ni and Co co-doped BiFeO3 multiferroics. Physica B 2021, 602, 412572. [Google Scholar] [CrossRef]
- Kebede, M.T.; Dillu, V.; Devi, S.; Chauhan, S. A comparative investigation of structural, magnetic and photocatalytic properties of pure, Ce-Ni and Cd-Ni co-doped BiFeO3 nanoparticles. Mater. Sci. Eng. B 2024, 301, 117188. [Google Scholar] [CrossRef]
- Kebede, M.T.; Devi, S.; Tripathi, B.; Chauhan, S.; Dillu, V. Structural transition and enhanced magnetic, optical and photocatalytic properties of novel Ce-Ni co-doped BiFeO3 nanoparticles. Mater. Sci. Eng. B 2022, 152, 107086. [Google Scholar] [CrossRef]
- Li, B.; Wang, C.; Liu, W.; Ye, M.; Wang, N. Multiferroic properties of La and Mn co-doped BiFeO3 nanofibers by sol-gel and electrospinning technique. Mater. Lett. 2013, 90, 45–48. [Google Scholar] [CrossRef]
- Akhtar, M.N.; Yousaf, M.; Baqir, M.A.; Batoo, K.M.; Khan, M.A. Pr-Co co-doped BiFeO3 multiferroic nanomaterials for absorber applications. Ceram. Int. 2021, 47, 2144–2154. [Google Scholar] [CrossRef]
- Yuan, X.; Shi, L.; Zhao, J.; Zhou, S.; Guo, J.; Pan, S.; Miao, X.; Wu, L. Tuning Ferroelectric, Dielectric, and Magnetic Properties of BiFeO3 Ceramics by Ca and Pb Co-Doping. Phys. Status Sol. B 2019, 256, 1800499. [Google Scholar] [CrossRef]
- Dhanalakshmi, B.; Sravani, G.M.; Suresh, J.; Reddy, P.V.S.S.S.N.; Rao, K.E.; Jyothula, S.; Beera, C.S. Impact of co-doping with Mn and Co/Mn on the structural, microstructural, dielectric, impedance, and magnetic characteristics of multiferroic bismuth ferrite nanoparticles. Appl. Phys. A 2023, 129, 452. [Google Scholar] [CrossRef]
- Marzouki, A.; Loyau, V.; Gemeiner, P.; Bessais, L.; Dkhil, B.; Megriche, A. Increase of magnetic and magnetoelectric properties in Co/Mn co-doped BiFeO3 multiferroic. J. Magn. Magn. Mater. 2020, 498, 166137. [Google Scholar] [CrossRef]
- Banu, I.B.S.; Lakshmi, S.D. Simultaneous enhancement of room temperature multiferroic properties of BiFeO3 by Nd doping at Bi site and Co doping at Fe site. J. Mater. Sci. Mater. Electron. 2017, 28, 16044–16052. [Google Scholar] [CrossRef]
- Jose, P.J.; Rathod, U.; Savaliya, C.; Jethva, S.; Panchasara, A.; Katba, S.; Keshvani, M.; Vagadia, M.; Ravalia, A. Studies on multiferroic Behavior of Y-Mn Co-Doped Bi0.9La0.1FeO3. J. Electron. Mater. 2022, 51, 6689–6698. [Google Scholar] [CrossRef]
- Razad, P.M.; Saravanakumar, K.; Reddy, V.R.; Choudhary, R.J.; Mahalakshmi, K. The study on Ni and Ti-co-doped bismuth ferrite BiFeO3 nanorods: Quenching of magnetism. J. Mater. Sci.Mater. Electron. 2022, 33, 260–269. [Google Scholar] [CrossRef]
- Song, S.; Jia, L.; Wang, S.; Zheng, D.; Liu, H.; Bo, F.; Kong, Y.; Xu, J. Enhancement of ferromagnetism in a multiferroic La-Co co-doped BiFeO3 thin films. J. Phys. D Appl. Phys. 2022, 55, 355002. [Google Scholar] [CrossRef]
- Rhaman, M.M.; Matin, M.A.; Hossain, M.N.; Mozahid, F.A.; Hakim, M.A.; Rizvi, M.H.; Islam, M.F. Bandgap Tuning of Sm and Co Co-doped BiFeO3 Nanoparticles for Photovoltaic Application. J. Electron. Mater. 2018, 47, 6954–6958. [Google Scholar] [CrossRef]
- Xu, Y.; Deng, C.; Wang, X. Bandgap modulation and phase boundary region of MF Gd, Co co-doped bismuth ferrite BiFeO3 thin film. AIP Adv. 2023, 13, 115004. [Google Scholar] [CrossRef]
- Gupta, S.; Feng, L.J.; Medwal, R.; Vas, J.V.; Mishra, M.; Deen, G.R.; Paul, L.C.K.; Rawat, R.S. Spin-casted (Gd-Zn) co-doped BiFeO3 thin films for sustainable oxide-electronics. Mater. Sci. Semicond. Proc. 2021, 132, 105902. [Google Scholar] [CrossRef]
- Xu, X.-L.; Wang, J.; Li, Y.; Xiong, B.-T.; Yang, H.-P.; Mao, W.-W.; Li, X. Enhanced Multiferroic Properties in Er and Mn Co-Doped bismuth ferrite BiFeO3 Nanoparticles. J. Supercond. Nov. Magn. 2022, 35, 1961–1966. [Google Scholar] [CrossRef]
- Rong, Q.-Y.; Xiao, W.-Z.; Xiao, G.; Hu, A.-M.; Wang, J.J. Magnetic properties in BiFeO3 doped with Cu and Zn first-principles investigation. J. Alloys Compd. 2016, 674, 463–469. [Google Scholar] [CrossRef]
- Zhou, Y.; Fan, Y.; Wang, Z.; Mao, W.; Weng, Y.; Zhang, J.; Pu, Y.; Yang, J.; Li, X. Effect of non-metallic X(X=F, N, S) and Cr co-doping on properties of BiFeO3: A first-principles study. Phys. Lett. A 2019, 383, 383–388. [Google Scholar] [CrossRef]
- Tariq, M.; Shaari, A.; Chaudhary, K.; Ahmed, R.; Jalil, M.A.; Ismail, F.D. Magnetoelectric, and dielectric based switching properties of co-doped BiFeO3 for low energy memory technology: A first-principles study. Physica B 2023, 650, 414489. [Google Scholar] [CrossRef]
- Ravindran, P.; Vidya, R.; Kjekshus, A.; Fjellvag, H.; Eriksson, O. Theoretical investigation of magnetoelectric behavior in BiFeO3. Phys. Rev. B 2006, 74, 224412. [Google Scholar] [CrossRef]
- Blinc, R.; Zeks, B. Soft Modes in Ferroelectric and Antiferroelectrics; North-Holland: Amsterdam, The Netherlands, 1974. [Google Scholar]
- Pirc, R.; Blinc, R. Off-center Ti model of barium titanate. Phys. Rev. B 2004, 70, 134107. [Google Scholar] [CrossRef]
- Tserkovnikov, Y.A. Decoupling of chains of equations for two-time Green’s functions. Theor. Math. Phys. 1971, 7, 250–261. [Google Scholar] [CrossRef]
- Nagayev, E.I. Spin Polaron Theory for Magnetic Semiconductors with Narrow Bands. Phys. Stat. Sol. B 1974, 65, 11–60. [Google Scholar] [CrossRef]
- Yaakob, M.K.; Zulkafli, N.M.A.; Kasim, M.F.; Mamat, M.H.; Mohamad, A.A.; Lu, L.; Yahya, M.Z.A. Structural phase instability, mixed-phase, and energy band gap change in BiFeO3 under lattice strain effect from first-principles investigation. Ceram. Int. 2021, 47, 12592–12599. [Google Scholar] [CrossRef]
- Kumar, M.; Sati, P.C.; Kumar, A.; Sahni, M.; Negi, P.; Singh, H.; Chauhan, S.; Chaurasia, S.K. Recent advances on magnetoelectric coupling in BiFeO3: Technological achievements and challenges. Mater. Today Proc. 2022, 49, 3046–3049. [Google Scholar] [CrossRef]
- Carranza-Celis, D.; Cardona-Rodriguez, A.; Narvaez, J.; Moscoso-Londono, O.; Muraca, D.; Knobel, M.; Ornelas-Soto, N.; Reiber, A.; Ramirez, J.G. Control of Multiferroic properties in BiFeO3 nanoparticles. Sci. Rep. 2019, 9, 3182. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, E.R.; Carranza-Celis, D.; Vergara-Duran, N.; da Cruz, A.S.E.; Londono, O.M.; Beron, F.; Knobel, M.; Reiber, A.; Muraca, D.; Ramirez, J.G.; et al. Resolving magnetic contributions in BiFeO3 nanoparticles using First order reversal curves. J. Magn. Magn. Mater. 2022, 556, 169409. [Google Scholar] [CrossRef]
- Wani, W.A.; Kundu, S.; Ramaswamy, K.; Venkataraman, B.H. Optimizing phase formation of BiFeO3 and Mn doped BiFeO3 nanoceramics via thermal treatment using citrate precursor method. SN Appl. Sci. 2020, 2, 1969. [Google Scholar] [CrossRef]
- Lima, A.F. Optical properties, energy band gap and the charge carriers–effective masses of the R3c BiFeO3 magnetoelectric compound. J. Phys. Chem. Solids 2020, 144, 109484. [Google Scholar] [CrossRef]
- Mocherla, P.; Karthik, C.; Ubic, R.; Rao, M.S.R.; Sudakar, C. Tunable Band-Gap in BiFeO3 Nanoparticles: The Role of Microstrain and Oxygen Defects. Appl. Phys. Lett. 2013, 103, 022910. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, M. Band gap tuning and optical properties of BiFeO3 nanoparticles. Mater. Today Proc. 2020, 28, 168–171. [Google Scholar] [CrossRef]
- Sando, D.; Carretero, C.; Grisolia, M.N.; Barthelemy, A.; Nagarajan, V.; Bibes, M. Revisiting the Optical Band Gap in Epitaxial BiFeO3 Thin Films. Adv. Opt. Mater. 2018, 6, 1700836. [Google Scholar] [CrossRef]
- Wang, T.; Wang, X.-L.; Song, S.-H.; Ma, Q. Effect of rare-earth Nd/Sm doping on the structural and multiferroic properties of BiFeO3 ceramics prepared by spark plasma sintering, Bi1−xAxFeO3 (A = Nd/Sm; x = 0, 0.05, 0.10, 0.15 and 0.20). Ceram. Int. 2020, 46, 15228–15235. [Google Scholar] [CrossRef]
- Bismibanu, A.; Vanga, P.R.; Alagar, M.; Selvalakshmi, T.; Banu, I.B.S.; Ashok, M. Impact of (Pr, Dy) Co-doping at Bi Site on Optical and Multiferroic Properties of BiFeO3 Ceramics Prepared by Sonochemical Method. Semiconductors 2021, 55, 914–921. [Google Scholar] [CrossRef]
- Wang, T.; Xu, T.; Gao, S.; Song, S.-H. Effect of Nd and Nb co-doping on the structural, magnetic and optical properties of multiferroic BiFeO3 nanoparticles prepared by sol-gel method. Ceram. Int. 2017, 43, 4489–4495. [Google Scholar] [CrossRef]
- Lakshmi, S.D.; Banu, I.B.S. Multiferroism and magnetoelectric coupling in single-phase Yb and X (X=Nb, Mn, Mo) co-doped BiFeO3 ceramics. J. Sol-Gel Sci. Technol. 2019, 89, 713–721. [Google Scholar] [CrossRef]
- Ramachandran, B.; Rao, M.S.R. Chemical pressure effect on optical properties in multiferroic bulk BiFeO3. J. Appl. Phys. 2012, 112, 073516. [Google Scholar] [CrossRef]
- Irfan, S.; Shen, Y.; Rizwan, S.; Wang, H.C.; Khan, S.B.; Nan, C.W. Band-gap engineering and enhanced photocatalytic activity of Sm and Mn doped BiFeO3 nanoparticles. J. Am. Ceram Soc. 2017, 100, 31–40. [Google Scholar] [CrossRef]
- Zhu, Y.; Quan, C.; Ma, Y.; Wang, Q.; Mao, W.; Wang, X.; Huang, W. Efect of Eu, Mn co-doping on structural, optical and magnetic properties of BiFeO3 nanoparticles. Mater. Sci. Semicond. Process 2017, 57, 178–184. [Google Scholar] [CrossRef]
- Vishwakarma, A.K.; Tripathi, P.; Srivastava, A.; Sinha, A.S.K.; Srivastava, O.N. Band gap engineering of Gd and Co doped BiFeO3 and their application in hydrogen production through photoelectrochemical route. Int. J. Hydrogen Energy 2017, 42, 22677–22686. [Google Scholar] [CrossRef]
- Ahmad, T.; Jindal, K.; Tomar, M.; Jha, P.K. Effect of co-doping of rare earth elements and Cr on multiferroic, optical and photocatalytic properties of BiFeO3. Mater. TodayCommun. 2023, 37, 107516. [Google Scholar] [CrossRef]
- Dong, H.; Ke, L.; Hui, X.; Mao, J.; Du, H.; Yuan, W. Ternary phase diagram and dielectric behavior of BiFeO3-BaTiO3-SrTiO3 solid solutions. Scripta Mater. 2024, 244, 116028. [Google Scholar] [CrossRef]
- Shankar, S.; Maurya, I.; Raj, A.; Singh, S.; Thakur, P.; Jayasimhadri, M. Dielectric and tunable ferroelectric properties in BiFeO3-BiCoO3-BaTiO3 ternary compound. Appl. Phys. A 2020, 126, 686. [Google Scholar] [CrossRef]
- Pang, D.; He, C.; Long, X. Multiferroic ternary solid solution system of BiFeO3-NdFeO3-PbTiO3. J. Alloys Compd. 2017, 709, 16–23. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apostolov, A.T.; Apostolova, I.N.; Wesselinowa, J.M. Theoretical Study of Co-Doping Effects with Different Ions on the Multiferroic Properties of BiFeO3 Nanoparticles. Materials 2024, 17, 4298. https://doi.org/10.3390/ma17174298
Apostolov AT, Apostolova IN, Wesselinowa JM. Theoretical Study of Co-Doping Effects with Different Ions on the Multiferroic Properties of BiFeO3 Nanoparticles. Materials. 2024; 17(17):4298. https://doi.org/10.3390/ma17174298
Chicago/Turabian StyleApostolov, Angel T., Iliana N. Apostolova, and Julia M. Wesselinowa. 2024. "Theoretical Study of Co-Doping Effects with Different Ions on the Multiferroic Properties of BiFeO3 Nanoparticles" Materials 17, no. 17: 4298. https://doi.org/10.3390/ma17174298
APA StyleApostolov, A. T., Apostolova, I. N., & Wesselinowa, J. M. (2024). Theoretical Study of Co-Doping Effects with Different Ions on the Multiferroic Properties of BiFeO3 Nanoparticles. Materials, 17(17), 4298. https://doi.org/10.3390/ma17174298