Modelling and Characterisation of Orthotropic Damage in Aluminium Alloy 2024
Abstract
:1. Introduction
2. Constitutive Model for Orthotopic Damage
3. Material Characterisation
Damage Model Characterisation: Methodology and Results
4. Numerical Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lemaitre, J.; Desmorat, R. Engineering Damage Mechanics; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef]
- Lemaitre, J. A Continuous Damage Mechanics Model for Ductile Fracture. J. Eng. Mater. Technol. 1985, 107, 83–89. [Google Scholar] [CrossRef]
- Ganjiani, M. Identification of damage parameters and plastic properties of an anisotropic damage model by micro-hardness measurements. Int. J. Damage Mech. 2013, 22, 1089–1108. [Google Scholar] [CrossRef]
- Krajcinovic, D. Continuous Damage Mechanics Revisited: Basic Concepts and Definitions. J. Appl. Mech. 1985, 52, 829–834. [Google Scholar] [CrossRef]
- Lemaitre, J.; Desmorat, R.; Sauzay, M. Anisotropic damage law of evolution. Eur. J. Mech.-A/Solids 2000, 19, 187–208. [Google Scholar] [CrossRef]
- Besson, J. Continuum Models of Ductile Fracture: A Review. Int. J. Damage Mech. 2010, 19, 3–52. [Google Scholar] [CrossRef]
- Soyarslan, C.; Tekkaya, A.E. A damage coupled orthotropic finite plasticity model for sheet metal forming: CDM approach. Comput. Mater. Sci. 2010, 48, 150–165. [Google Scholar] [CrossRef]
- Hill, R. A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. Lond. A Math. Phys. Sci. 1948, 193, 281–297. [Google Scholar] [CrossRef]
- Hill, R. The Mathematical Theory of Plasticity; Oxford University Press: Oxford, UK, 1998. [Google Scholar] [CrossRef]
- Bonora, N.; Majzoobi, G.H.; Khademi, E. Numerical implementation of a new coupled cyclic plasticity and continum damage model. Comput. Mater. Sci. 2014, 81, 538–547. [Google Scholar] [CrossRef]
- Khoei, A.R.; Eghbalian, M. Numerical simulation of cyclic behavior of ductile metals with a coupled damage–viscoplasticity model. Comput. Mater. Sci. 2012, 55, 376–389. [Google Scholar] [CrossRef]
- De Borst, R.; Feenstra, P.H. Studies in anisotropic plasticity with reference to the Hill criterion. Int. J. Numer. Methods Eng. 1990, 29, 315–336. [Google Scholar] [CrossRef]
- Aretz, H.; Hopperstad, O.S.; Lademo, O.-G. Yield function calibration for orthotropic sheet metals based on uniaxial and plane strain tensile tests. J. Mater. Process Technol. 2007, 186, 221–235. [Google Scholar] [CrossRef]
- Brünig, M. Numerical analysis of anisotropic ductile continuum damage. Comput. Methods Appl. Mech. Eng. 2003, 192, 2949–2976. [Google Scholar] [CrossRef]
- Chow, C.L.; Wang, J. An anisotropic theory of continuum damage mechanics for ductile fracture. Eng. Fract. Mech. 1987, 27, 547–558. [Google Scholar] [CrossRef]
- Chow, C.L.; Wang, J. An anisotropic theory of elasticity for continuum damage mechanics. Int. J. Fract. 1987, 33, 3–16. [Google Scholar] [CrossRef]
- Sidoroff, F. Description of Anisotropic Damage Application to Elasticity. In Physical Non-Linearities in Structural Analysis; Springer: Berlin/Heidelberg, Germany, 1981; pp. 237–244. [Google Scholar] [CrossRef]
- Cordebois, J.P.; Sidoroff, F. Damage Induced Elastic Anisotropy. In Mechanical Behavior of Anisotropic Solids/Comportment Méchanique des Solides Anisotropes; Springer: Dordrecht, The Netherlands, 1982; pp. 761–774. [Google Scholar] [CrossRef]
- Ju, J.W. On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects. Int J Solids Struct 1989, 25, 803–833. [Google Scholar] [CrossRef]
- Yue, J.; Yuan, Z. A Thermodynamically Consistent Anisotropic Continuum Damage Mechanics Model with Damage-Dependent Equivalent Strain. J. Appl. Mech. 2024, 91, 091002. [Google Scholar] [CrossRef]
- Gautam, A.; Yadav, R.K.; Ajit, K.P.; Rajak, V.K. A Review on CDM-Based Ductile Models and its Application. Trans. Indian Inst. Met. 2023, 76, 1141–1154. [Google Scholar] [CrossRef]
- Vignjevic, R.; Djordjevic, N.; Galka, A.; Appleby-Thomas, G.; Hughes, K. Constitutive model for fibre reinforced composites with progressive damage based on the spectral decomposition of material stiffness tensor. Compos. Struct. 2022, 292, 115596. [Google Scholar] [CrossRef]
- Polyzos, E.; Lopes, I.A.R.; Camanho, P.P.; Van Hemelrijck, D.; Pyl, L. Probabilistic progressive damage modeling of hybrid composites. Mech. Mater. 2024, 197, 105087. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Akbari, E.; Łuczak, B.; Sumelka, W. Towards Determining an Engineering Stress-Strain Curve and Damage of the Cylindrical Lithium-Ion Battery Using the Cylindrical Indentation Test. Batteries 2023, 9, 233. [Google Scholar] [CrossRef]
- Chow, C.L.; Lu, T.J. A comparative study of continuum damage models for crack propagation under gross yielding. Int. J. Fract. 1992, 53, 43–75. [Google Scholar] [CrossRef]
- Vignjevic, R.; Djordjevic, N.; Panov, V. Modelling of dynamic behaviour of orthotropic metals including damage and failure. Int. J. Plast. 2012, 38, 47–85. [Google Scholar] [CrossRef]
- Dantec Systems. Advanced Full-Field Displacement and Strain Analysis, Digital 3D Correlation System Q-400-II; Dantec Dynamics: Ulm, Germany, 2006. [Google Scholar]
- Ravindran, S. Prediction of Material Damage in Orthotropic Metals for Virtual Structural Testing. Ph.D. Thesis, Cranfield University, Cranfield, UK, 2010. [Google Scholar]
- Wu, T.; Coret, M.; Combescure, A. Strain Localisation and Damage Measurement by Full 3D Digital Image Correlation: Application to 15-5PH Stainless Steel. Strain 2011, 47, 49–61. [Google Scholar] [CrossRef]
- Vignjevic, R.; Djordjevic, N.; Campbell, J.; Panov, V. Modelling of dynamic damage and failure in aluminium alloys. Int. J. Impact Eng. 2012, 49, 61–76. [Google Scholar] [CrossRef]
- de Borst, R.; Crisfield, M.A.; Remmers, J.J.C.; Verhoosel, C.V. Non-Linear Finite Element Analysis of Solids and Structures; Wiley: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Xavier, J.; Pereira, J.C.R.; de Jesus, A.M.P. Characterisation of steel components under monotonic loading by means of image-based methods. Opt. Lasers Eng. 2014, 53, 142–151. [Google Scholar] [CrossRef]
Specimen Orientation Relative to Rolling Direction | UCS | VCS |
---|---|---|
0° | 8 | 5 |
90° | 1 | 2 |
45° | 3 | 3 |
Parameter | Description | Experimental Value |
---|---|---|
Young’s modulus—longitudinal or direction-1 or (0°) | 67.8 GPa | |
Young’s modulus—transverse or direction-2 or (90°) | 66.6 GPa | |
Young’s modulus—through-thickness or direction-3 | 66.6 GPa | |
Poisson ratio between 2-1 direction | 0.326 | |
Poisson ratio between 3-1 direction | 0.347 | |
Poisson ratio between 3-2 direction | 0.326 | |
Shear modulus between 1-2 direction | 25.81 GPa | |
Shear modulus between 2-3 direction | 25.81 GPa | |
Shear modulus between 3-1 direction | 25.81 GPa | |
Hill’s anisotropic coefficient | 1.0 | |
Hill’s anisotropic coefficient | 0.9364 | |
Hill’s anisotropic coefficient | 0.8877 | |
Hill’s anisotropic coefficient | 0.9015 | |
Hill’s anisotropic coefficient | 0.9515 | |
Hill’s anisotropic coefficient | 0.9683 | |
Chow’s damage potential matrix constant | 0.945 | |
Chow’s damage threshold constant | 2.44 GPa | |
Damage initiation stress under uniaxial tensile test | 309 MPa | |
Critical damage value in longitudinal direction | 0.217 | |
Critical damage value in transverse direction | 0.242 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djordjevic, N.; Sundararajah, R.; Vignjevic, R.; Campbell, J.; Hughes, K. Modelling and Characterisation of Orthotropic Damage in Aluminium Alloy 2024. Materials 2024, 17, 4281. https://doi.org/10.3390/ma17174281
Djordjevic N, Sundararajah R, Vignjevic R, Campbell J, Hughes K. Modelling and Characterisation of Orthotropic Damage in Aluminium Alloy 2024. Materials. 2024; 17(17):4281. https://doi.org/10.3390/ma17174281
Chicago/Turabian StyleDjordjevic, Nenad, Ravindran Sundararajah, Rade Vignjevic, James Campbell, and Kevin Hughes. 2024. "Modelling and Characterisation of Orthotropic Damage in Aluminium Alloy 2024" Materials 17, no. 17: 4281. https://doi.org/10.3390/ma17174281
APA StyleDjordjevic, N., Sundararajah, R., Vignjevic, R., Campbell, J., & Hughes, K. (2024). Modelling and Characterisation of Orthotropic Damage in Aluminium Alloy 2024. Materials, 17(17), 4281. https://doi.org/10.3390/ma17174281