Hydrothermal Synthesis of a Valence State Constant High-Entropy Perovskite Sr(TiZrHfVNb)O3 with Improved Photoresponsiveness
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Preparation
2.2. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rost, C.M.; Sachet, E.; Borman, T.; Moballegh, A.; Dickey, E.C.; Hou, D.; Jones, J.L.; Curtarolo, S.; Maria, J.P. Entropy-stabilized oxides. Nat. Commun. 2015, 6, 8485. [Google Scholar] [CrossRef]
- Xiang, H.; Xing, Y.; Dai, F.Z.; Wang, H.J.; Su, L.; Miao, L.; Zhang, G.J.; Wang, Y.G.; Qi, X.W.; Yao, L.; et al. High-entropy ceramics: Present status, challenges, and a look forward. J. Adv. Ceram. 2021, 10, 385–441. [Google Scholar] [CrossRef]
- Anand, G.; Wynn, A.P.; Handley, C.M.; Freeman, C.L. Phase stability and distortion in high-entropy oxides. Acta Mater. 2018, 146, 119–125. [Google Scholar] [CrossRef]
- Dong, L.; Pang, B.; Gao, Y. Solvent thermal method combined with molten salt assisted boron carbon thermal reduction to synthesize (Ti0.2Mo0.2W0.2Ta0.2Nb0.2)B2 powder. J. Ceram. 2023, 44, 1208–1216. [Google Scholar]
- Gan, K.; Cai, C.; Wu, Z.C.; Duan, D.P.; Yang, J.L. Preparation and properties of Sr(CrMnFeCoNi)3O4 and Sr(MgAlTiCrFe)12O19 high entropy strontium ferrite systems and valancestate analysis. Ceram. Int. 2022, 48, 23963–23974. [Google Scholar] [CrossRef]
- Chen, H.; Fu, J.; Zhang, P.F.; Peng, H.; Abney, C.W.; Jie, K.; Liu, X.; Chi, M.; Dai, S. Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with hightemperature stability. J. Mater. Chem. 2018, 6, 11129–11133. [Google Scholar] [CrossRef]
- Sarkar, A.; Velasco, L.; Wang, D.; Wang, Q.; Talasila, G.; de Biasi, L.; Kubel, C.; Brezesinski, T.; Bhatttacharya, S.S.; Hahn, H.; et al. High entropy oxides for reversible energy storage. Nat. Commun. 2018, 9, 3400. [Google Scholar] [CrossRef]
- Chen, K.; Pei, X.; Tang, L.; Cheng, H.; Li, Z.; Li, C.; Zhang, X.; An, L. A five-component entropy-stabilized fluorite oxide. J. Eur. Ceram. Soc. 2018, 38, 4161–4164. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Y. High-entropy transparent fluoride laser ceramics. J. Am. Ceram. Soc. 2020, 103, 750–756. [Google Scholar] [CrossRef]
- Dąbrowa, J.; Stygar, M.; Mikuła, A.; Knapik, A.; Mroczka, K.; Tejchman, W.; Danielewski, M.; Marin, M. Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide characterized by spinel structure. Mater. Lett. 2018, 216, 32–36. [Google Scholar] [CrossRef]
- Grzesik, Z.; Smoła, G.; Miszczak, M.; Stygar, M.; Dąbrowa, J.; Zajusz, M.; Świerczek, K.; Danielewski, M. Defect structure and transport properties of (Co, Cr, Fe, Mn, Ni)3O4 spinel-structured high entropy oxide. J. Eur. Ceram. Soc. 2020, 40, 835–839. [Google Scholar] [CrossRef]
- Mao, A.; Xiang, H.Z.; Zhang, Z.G.; Kuramoto, K.; Zhang, H.; Jia, Y. A new class of spinel high-entropy oxides with controllable magnetic properties. J. Magn. Magn. Mater. 2020, 497, 165884. [Google Scholar] [CrossRef]
- Parida, T.; Karati, A.; Guruvidyathri, K.; Murty, B.S.; Markandeyulu, G. Novel rareearth and transition metal-based entropy stabilized oxides with spinel structure. Scr. Mater. 2020, 178, 513–517. [Google Scholar] [CrossRef]
- van Benthem, K.; Elsasser, C.; French, R.H. Bulk electronic structure of SrTiO3: Experiment and theory. J. Appl. Phys. 2001, 90, 6156–6164. [Google Scholar] [CrossRef]
- Wang, X.; Wei, T.; Xu, Y.; Wu, L.; Han, Y.; Cui, J. High-entropy perovskite oxides: An emergent type of photochromic oxides with fast response for handwriting display. J. Adv. Ceram. 2023, 12, 1371–1388. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, T.; Zhang, L.; Liu, T.; Wu, Z.; Zhu, G.; Jia, Y. Ferroelectric BaTiO3/Pr2O3 heterojunction harvesting room-temperature cold–hot alternation energy for efficiently pyrocatalytic dye decomposition. J. Adv. Ceram. 2024, 13, 44–52. [Google Scholar] [CrossRef]
- Jiang, S.; Hu, T.; Gild, J.; Zhou, N.; Nie, J.; Qin, M.; Harrington, T.; Vecchio, K.; Luo, J. A new class of high-entropy perovskite oxides. Scr. Mater. 2018, 142, 116–120. [Google Scholar] [CrossRef]
- Cardona, M. Optical properties and band structure of SrTiO3 and BaTiO3. Phys. Rev. 1965, 140, 651–655. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Cai, X.; Duan, D.; Jia, Q. A unique octadecahedron SrTiO3 perovskite oxide with a nano step-shaped facet structure for enhanced photoredox and hydrogen evolution performance. J. Mater. Chem. 2023, 11, 21046. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, S.; Li, T.; Xie, B.; Guo, K.; Lu, J. Microstructure and ferroelectric properties of high-entropy perovskite oxides with A-site disorder. Ceram. Int. 2021, 47, 33039–33046. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, F.; Zhang, X.; Shi, T.; Li, J.; Bai, Y.; Wang, C.; Wang, Z. Enhanced electrical properties of (Bi0.2Na0.2Ba0.2Ca0.2Sr0.2)TiO3 high-entropy ceramics prepared by hydrothermal method. Ceram. Int. 2022, 48, 19492–19500. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, X.; Yan, J. Preparation and Property of High-entropy (La0.2Li0.2Ba0.2Sr0.2Ca0.2)TiO3 Perovskite Ceramics. J. Inorg. Mater. 2021, 36, 379–385. [Google Scholar] [CrossRef]
- Pu, Y.; Zhang, Q.; Li, R.; Chen, M.; Du, X.; Zhou, S. Dielectric properties and electrocaloric effect of high-entropy (Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)TiO3 ceramic. Appl. Phys. Lett. 2019, 115, 223901. [Google Scholar] [CrossRef]
- Yang, W.; Zheng, G. High energy storage density and efficiency in nanostructured (Bi0.2Na0.2K0.2La0.2Sr0.2)TiO3 high-entropy ceramics. J. Am. Ceram. Soc. 2022, 105, 1083–1094. [Google Scholar] [CrossRef]
- Harrington, T.J.; Gild, J.; Sarker, P.; Toher, C.; Rost, C.M.; Dippo, O.F.; McElfresh, C.; Kaufmann, K.; Marin, E.; Borowski, L.; et al. Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Mater. 2019, 166, 271–280. [Google Scholar] [CrossRef]
- Macías, J.; Yaremchenko, A.A.; Frade, J.R. Enhanced stability of perovskite-like SrVO3-based anode materials by donor-type substitutions. J. Mater. Chem. A 2016, 4, 10186–10194. [Google Scholar] [CrossRef]
- Chen, Y.N.; Sun, Z.P.; Wang, Z.M.; Zhao, W.K.; Shang, Z.W. Influence of multi-element bonding phase composition on the preparation and properties of pressureless-sintered (Ta, Nb, Ti, V, W)C high-entropy ceramics. J. Mater. Res. 2024, 39, 1181–1196. [Google Scholar] [CrossRef]
- Chicardi, E.; Garcia-Garrido, C.; Gotor, F.J. Low temperature synthesis of an equiatomic (TiZrHfVNb)C5 high entropy carbide by a mechanically-induced carbon diffusion route. Ceram. Int. 2019, 45, 21858–21863. [Google Scholar] [CrossRef]
- Rezaei, F.; Kakroudi, M.G.; Shahedifar, V.; Vafa, N.P. Consolidation and mechanical properties of hot pressed TaC-HfC-VC composites. Ceram. Int. 2017, 43, 15537–15543. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, W.; Tan, Y.; Jia, P.; Xu, C.; Wang, Y.; Zhang, X.; Han, J.; Zhou, Y. Influence of vanadium content on the microstructural evolution and mechanical properties of (TiZrHfVNbTa)C high-entropy carbides processed by pressureless sintering. J. Eur. Ceram. Soc. 2021, 41, 60–67. [Google Scholar] [CrossRef]
Element | Binding Energy (eV) | Percentage (%) | Species | |||
---|---|---|---|---|---|---|
180 °C | 1200 °C | 180 °C | 1200 °C | 180 °C | 1200 °C | |
Ti 2p | 457.8 | 457.46 | 62.9 | 41.1 | 2p3/2 RTiO3 | 2p3/2 Ti3+ |
459.1 | 459.65 | 1.8 | 33.1 | 2p3/2 TiO2 | 2p3/2 Ti4+ | |
463.6 | 463.46 | 35.3 | 16.4 | 2p1/2 TiO2 | 2p1/2 Ti3+ | |
- | 465.65 | - | 9.4 | - | 2p1/2 Ti4+ | |
Zr 3d | 181.4 | 180.9 | 54.0 | 22.7 | 3d5/2 ZrO2 | 3d5/2 ZrO2/Zr3+ |
183.6 | 183.3 | 46.0 | 63.3 | 3d5/2 ZrO2 | 3d5/2 ZrO2 | |
- | 185.8 | - | 14.0 | - | 3d3/2 ZrO2 | |
Hf 4f | 16.0 | 15.4 | 13.3 | 7.9 | 4f7/2 HfO2 | 4f7/2 Hf3+ |
17.6 | 17.6 | 86.7 | 18.7 | 4f5/2 HfO2 | 4f5/2 HfO2 | |
- | 19.4 | - | 73.4 | - | 4f5/2 HfO2 | |
Nb 3d | 206.5 | 206.5 | 32.4 | 28.3 | 3d5/2 ANbO3/Nb2O5 | 3d5/2 ANbO3/Nb2O5 |
209.2 | 209.0 | 22.4 | 41.7 | 3d3/2 ANbO3 | 3d3/2 ANbO3 | |
212.2 | 211.7 | 45.2 | 30.0 | 3d3/2 Nb2O5 | 3d3/2 Nb2O5 | |
O 1s | 529.1 | 529.1 | 50.6 | 18.8 | lattice oxygen | |
530.8 | 531.3 | 49.4 | 81.2 | vacancy oxygen |
Temperature ( °C) | Binding Energy (eV) | Percentage (%) | Species |
---|---|---|---|
Hydrothermal | 515.8 | 38.5 | 3/2 V2O3 |
516.8 | 36.3 | 3/2 V2O3 | |
524.0 | 25.2 | 1/2 V3+ | |
500 | 516.9 | 60.9 | 3/2 V2O3 |
518.6 | 14.1 | 3/2 V2O5 | |
524.3 | 25.0 | 1/2 VO2/V2O5 | |
600 | 516.2 | 18.9 | 3/2 VO2 |
517.2 | 49.3 | 3/2 V2O3 | |
524.3 | 31.8 | 1/2 VO2/V2O5 | |
700 | 516.2 | 17.9 | 3/2 VO2 |
516.9 | 25.7 | 3/2 V2O3 | |
517.6 | 26.5 | 3/2 V2O5 | |
524.2 | 10.5 | 1/2 VO2 | |
524.6 | 19.4 | 1/2 V2O5 | |
800 | 516.4 | 23.4 | 3/2 VO2 |
517.2 | 20.2 | 3/2 V2O3 | |
517.6 | 29.1 | 3/2 V2O5 | |
523.9 | 13.6 | 1/2 VO2 | |
525.2 | 13.7 | 1/2 V2O5 | |
900 | 516.4 | 32.6 | 3/2 VO2 |
517.2 | 6.9 | 3/2 V2O3 | |
517.5 | 32.9 | 3/2 V2O5 | |
523.5 | 10.8 | 1/2 VO2 | |
524.9 | 16.8 | 1/2 V2O5 | |
1200 | 516.5 | 45.1 | 3/2 VO2 |
518.6 | 40.8 | 3/2 V2O5 | |
524.9 | 14.1 | 1/2 VO2/V2O5 |
Element | Binding Energy (eV) | Percentage (%) | Species | |||
---|---|---|---|---|---|---|
180 °C | 1200 °C | 180 °C | 1200 °C | 180 °C | 1200 °C | |
Ti 2p | 457.7 | 457.6 | 40.8 | 40.9 | 2p3/2 RTiO3 | 2p3/2 RTiO3 |
458.5 | 459.3 | 10.2 | 30.7 | 2p3/2 TiO2 | 2p3/2 TiO2 | |
463.4 | 463.7 | 50.0 | 28.4 | 2p1/2 Ti4+ | 2p1/2 Ti4+ | |
Zr 3d | 180.9 | 180.6 | 55.3 | 30.9 | 3d5/2 ZrO2/Zr3+ | 3d5/2 Zr3+ |
183.3 | 182.6 | 44.7 | 57.3 | 3d5/2 ZrO2 | 3d5/2ZrO2 | |
- | 184.6 | - | 11.8 | - | 3d3/2ZrO2 | |
Hf 4f | 15.5 | 15.1 | 17.6 | 5.5 | 4f7/2 Hf3+ | 4f7/2 Hf3+ |
17.3 | 17.3 | 82.4 | 52.2 | 4f5/2 HfO2 | 4f5/2 HfO2 | |
- | 19.8 | - | 42.3 | - | 4f5/2 HfO2 | |
Fe 2p | 710.2 | 711.2 | 64.5 | 65.4 | 2p3/2 Fe3O4 | 2p3/2 Fe2O3 |
709.6 | 724.6 | 4.3 | 34.6 | 2p3/2 FeO | 2p1/2 Fe2O3 | |
723.3 | - | 31.2 | - | 2p1/2 Fe3O4 | ||
V 2p | 515.8 | 516.4 | 16.7 | 56.1 | 3/2 V2O3 | 3/2 VO2 |
516.3 | 518.0 | 47.6 | 28.0 | 3/2 VO2 | 3/2 V2O5 | |
521.9 | 524.4 | 10.2 | 15.9 | 1/2 V3+ | 1/2 VO2/V2O5 | |
524.1 | 25.5 | 1/2 VO2 |
Species | Hydrothermal | 500~800 °C | 900 °C | 1200 °C |
---|---|---|---|---|
Sr(TiZrHfVNb)O3 | √ | - | - | - |
Sr(TiZrHfV0.2−xNb)O3 | - | √ | √ | - |
Sr(TiZrHfNb)O3 | - | - | √ | √ |
Sr5(VO4)3R | - | √ | √ | - |
Sr3(VO4)2 | - | - | - | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Y.; Gan, K.; Li, X.; Duan, D. Hydrothermal Synthesis of a Valence State Constant High-Entropy Perovskite Sr(TiZrHfVNb)O3 with Improved Photoresponsiveness. Materials 2024, 17, 4275. https://doi.org/10.3390/ma17174275
Bai Y, Gan K, Li X, Duan D. Hydrothermal Synthesis of a Valence State Constant High-Entropy Perovskite Sr(TiZrHfVNb)O3 with Improved Photoresponsiveness. Materials. 2024; 17(17):4275. https://doi.org/10.3390/ma17174275
Chicago/Turabian StyleBai, Yihua, Ke Gan, Xiaohu Li, and Dongping Duan. 2024. "Hydrothermal Synthesis of a Valence State Constant High-Entropy Perovskite Sr(TiZrHfVNb)O3 with Improved Photoresponsiveness" Materials 17, no. 17: 4275. https://doi.org/10.3390/ma17174275
APA StyleBai, Y., Gan, K., Li, X., & Duan, D. (2024). Hydrothermal Synthesis of a Valence State Constant High-Entropy Perovskite Sr(TiZrHfVNb)O3 with Improved Photoresponsiveness. Materials, 17(17), 4275. https://doi.org/10.3390/ma17174275