The Specificity of Determining the Latent Heat of Solidification of Cast Hypoeutectic AlSiCu Alloys Using the DSC Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Method: Differential Scanning Calorimetry
3. Results and Discussion
3.1. Impact of Chemistry on Shapes of DSC Curves and Calculated Latent Heat
3.2. Impacts of Various Cooling Rates on Shapes of DSC Curves and Calculated Latent Heats
4. Conclusions
- The increase in the silicon content from 5 to 9% shifted the liquidus temperatures to lower values by approximately 24 °C during both the heating and cooling cycles;
- The addition of copper, while maintaining a constant silicon content, lowered the liquidus temperature by approximately 20 °C during both the heating and cooling cycles;
- The increase in silicon content in the investigated alloys from 4.85% to 9.85% resulted in the increase in latent heat from 407.6 kJ/kg to 467.5 kJ/kg;
- The solidification paths were notably different for each cooling rate (Figure 5) and could affect the amount of released latent heat;
- Higher cooling rates, such as 50 °C/min, result in a reduced latent heat release compared to slower rates such as 10 °C/min and 6 °C/min.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zamani, M. AlSi Cast Alloys—Microstructure and Mechanical Properties at Ambient and Elevated Temperature. Ph.D. Thesis, School of Engineering, Jönköping University, Jönköping, Sweden, 2015; pp. 1–87. [Google Scholar]
- ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, New York; ASM Internacional: Detroit, MI, USA, 1990; pp. 152–177. ISBN 978-0-87170-378-1.
- Davies, J.R. Aluminium and Aluminium Alloys; ASM International: Detroit, MI, USA, 1993. [Google Scholar]
- Djurdjevic, M.B.; Manasijevic, S.; Mihailovic, M.; Stopic, S. From bauxite as critical material to required properties of cast aluminum alloys for electro automotive parts. Metals 2023, 13, 1796. [Google Scholar] [CrossRef]
- Mondolfo, L.F. Aluminum Alloys, Structure and Properties; Butterworths: London, UK, 1979; pp. 213–614. [Google Scholar]
- Crossley, P.B.; Mondolfo, L.F. The Modification of Aluminum Silicon Alloys. Mod. Cast. 1966, 49, 53. [Google Scholar]
- Bäckerud, L.; Chai, G.; Tamminen, J. Solidification Characteristics of Aluminum Alloys; AFS/SKANALUMINIUM: Oslo, Norway, 1986; Volume 2. [Google Scholar]
- Arnberg, L.; Backerud, L. Solidification Characteristics of Aluminum Alloys; AFS: Des Plaines, IL, USA, 1996; Volume 3. [Google Scholar]
- Djurdjevic, M.; Manasijevic, S. Impact of alloying elements on the solidification parameters of cast hypoeutectic AlSi6Cu (1–4) and AlSi8Cu (1–4) alloys. J. Metall. Mater. Eng. 2014, 20, 235–246. [Google Scholar] [CrossRef]
- Huber, G.; Djurdjevic, M. Impact of silicon, magnesium and strontium on feeding ability of AlSiMg cast alloys. In Proceedings of the THERMEC, Graz, Austria, 29 May–3 June 2016; p. 249. [Google Scholar]
- Djurdjevic, M.; Manasijevic, S.; Odanovic, Z.; Radisa, R. Influence of different contents of silicon and copper on the solidification pathways of cast hypoeutectic AlSi(5–9 wt.%) Cu(1–4 wt. %) alloys. Int. J. Mater. Res. 2013, 104, 865–873. [Google Scholar] [CrossRef]
- Sabatino, M. Fluidity of Aluminum Foundry Alloys. Ph.D. Thesis, Norwegian University of Science and Technology (NTNU), Trondheim, Norway, September 2005. [Google Scholar]
- Samuel, F.; Samuel, A.M.; Doty, H.W.; Valtierra, S. On Porosity Formation in Al–Si–Cu Cast Alloys. In Light Metals; Springer: Cham, Switzerland, February 2017; pp. 243–255. [Google Scholar] [CrossRef]
- Kuchariková, L.; Tillová, E.; Uhríčik, M.; Belan, J. Porosity formation and fatigue properties of AlSiCu cast alloy. MATEC Web Conf. 2018, 157, 07003. [Google Scholar] [CrossRef]
- Stanić, D.; Brodarac, Z.Z.; Li, L. Influence of copper addition in AlSi7MgCu alloy on microstructure development and tensile strength improvement. Metals 2020, 10, 1623. [Google Scholar] [CrossRef]
- Davoodi, A. Mechanistic Studies of Localized Corrosion of Al alloys by High Resolution In Situ and Ex-Situ Probing Techniques. Ph.D. Thesis, KTH Chemical Science and Engineering, Stockholm, Sweden, 2007. [Google Scholar]
- Djurdjevic, M.; Huber, G. Determination of rigidity point/temperature using thermal analysis method and mechanical technique. J. Alloys Compd. 2014, 590, 500–506. [Google Scholar] [CrossRef]
- Djurdjevic, M.; Odanovic, Z.; Zak, H. Detection of dendrite coherency temperature by aluminum alloys using single thermocouple technique. Prakt. Metallographie. 2012, 49, 86–98. [Google Scholar] [CrossRef]
- Djurdjevic, M.; Odanovic, Z. Analysis of the solidification path of Al-Si9-Cu(1-4) alloys using thermal analysis technique. La Metall. Italliana 2014, 106, 23–28. [Google Scholar]
- Djurdjevic, M.; Manasijevic, S.; Komatina, M. Determination of latent heats for hypoeutectic AlSi7Cu(1–4) and AlSi9Cu(1–4) alloys using thermal analysis technique. J. Therm. Anal. Calorim. 2024, 149, 2049–2056. [Google Scholar] [CrossRef]
- Djurdjevic, M.; Sokolowski, J.; Kierkus, W.; Byczynski, G. The Effect of Chemistry and Cooling Rate on the Latent Heat Released during the Solidification of the 3XX Series of Aluminum Alloys. Mater. Sci. Forum 2007, 539–543, 299–304. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, K.; Elgallad, E.; Breton, F.; Chen, X.G. Differential Scanning Calorimetry Fingerprints of Various Heat-Treatment Tempers of Different Aluminum Alloys. Metals 2020, 10, 763. [Google Scholar] [CrossRef]
- JMatPro. Available online: https://www.sentesoftware.co.uk/jmatpro (accessed on 15 May 2024).
- FactSage. Available online: http://www.factsage.com/ (accessed on 15 May 2024).
- Thermo-Calc. Available online: http://www.thermocalc.com (accessed on 15 May 2024).
- Saunders, N.; Li, X.; Miodownik, A.P.; Schille, J.P. Modelling of the thermo-physical and physical properties for solidification of Al-alloys. In Light Metals, 132th TMS Annual Conference, San Diego; Springer: Cham, Switzerland, 2003; pp. 999–1004. ISBN 087339531. [Google Scholar]
- Saunders, N. Solidification Processing 1997: Proceedings of the 4th Decennial International Conference on Solidification Processing; The Institute of Metals: Sheffield, UK, 1997; pp. 362–366. [Google Scholar]
- Samuel, E.; Samuel, A.M.; Songmene, V.; Samuel, F.H. A Review on the Analysis of Thermal and Thermodynamic Aspects of Grain Refinement of Aluminum-Silicon-Based Alloys. Materials 2023, 16, 5639. [Google Scholar] [CrossRef] [PubMed]
- Djurdjevic, M.B. Application of thermal analysis in ferrous and nonferrous foundries. J. Metall. Mater. Eng. 2021, 27, 457–471. [Google Scholar] [CrossRef] [PubMed]
- Fras, E.; Kapturkiewicz, W.; Burbielko, A.; Lopez, H.F. A New Concept in Thermal Analysis of Castings. AFS Trans. 1993, 101, 505–511. [Google Scholar]
- Kierkus, W.T.; Sokolowski, J.H. Recent Advances in CCA: A New Method of Determining ‘Baseline’ Equation. AFS Trans. 1999, 66, 161–167. [Google Scholar]
- Emadi, D.; Whiting, L. Determination of Solidification Characteristics of Al-Si Alloys by Thermal Analysis. AFS Trans. 2002, 110, 285–296. [Google Scholar]
- Agarwala, S.; Prabhu, N.K. Characterization of metals and salts-based thermal energy storage materials using energy balance method. Heat Transf.—Asian Res. 2019, 48, 1889–1898. [Google Scholar] [CrossRef]
- ASTM E793-06; Standard Test Method for Enthalpies of Fusion and Crystallization by Differential Scanning Calorimetry. ASTM: West Conshohocken, PA, USA, 2018.
- Doty, H.W.; Samuel, A.M.; Samuel, F.H. Factors Controlling the Type and Morphology of Cu-Containing Phases in the 319 Aluminum Alloy. In Proceedings of the 100th AFS Casting Congress, Philadelphia, PA, USA, 20–23 April 1996; pp. 1–30. [Google Scholar]
- Engineering Toolbox. Available online: https://www.engineeringtoolbox.com/fusion-heat-metals-d_1266.html (accessed on 15 May 2024).
- Dobrzański, L.A.; Maniara, R.; Sokolowski, J.H. The effect of cast Al-Si-Cu alloy solidification rate on alloy thermal characteristics. J. Achiev. Mater. Manuf. Eng. 2006, 17, 217–220. [Google Scholar]
Alloy | Si | Cu | Fe | Mg | Ti | Sr | Ni | Al |
---|---|---|---|---|---|---|---|---|
AlSI5Cu1 | 4.85 | 1.03 | 0.09 | 0.14 | 0.057 | 0.0009 | 0.009 | 93.82 |
AlSi5Cu2 | 5.01 | 2.06 | 0.1 | 0.15 | 0.062 | 0.0012 | 0.009 | 92.61 |
AlSi5Cu4 | 4.89 | 3.85 | 0.09 | 0.16 | 0.057 | 0.0035 | 0.009 | 90.94 |
AlSI7Cu1 | 7.13 | 0.96 | 0.12 | 0.28 | 0.098 | 0.0033 | 0.008 | 91.40 |
AlSi7Cu2 | 7.05 | 1.98 | 0.13 | 0.28 | 0.094 | 0.0027 | 0.009 | 90.45 |
AlSi7Cu4 | 6.75 | 4.38 | 0.12 | 0.29 | 0.091 | 0.0029 | 0.009 | 88.36 |
AlSI9Cu1 | 9.17 | 1.05 | 0.12 | 0.31 | 0.100 | 0.0042 | 0.007 | 89.24 |
AlSi9Cu2 | 9.02 | 2.44 | 0.12 | 0.31 | 0.096 | 0.0063 | 0.007 | 88.00 |
AlSi9Cu4 | 9.85 | 4.38 | 0.14 | 0.27 | 0.090 | 0.0035 | 0.009 | 85.26 |
Temperature Segment | Temperature (°C) | Heating/Cooling Rate (°C/min) |
---|---|---|
Isothermal | 25 | 0 |
Dynamic | 800 | 6 |
Isothermal | 800 | 0 |
Dynamic | 25 | 6 |
Isothermal | 25 | 0 |
Dynamic | 800 | 10 |
Isothermal | 800 | 0 |
Dynamic | 25 | 10 |
Isothermal | 25 | 0 |
Dynamic | 800 | 50 |
Isothermal | 800 | 0 |
Dynamic | 25 | 50 |
Alloy | DSC 6 °C/min | DSC 10 °C/min | DSC 50 °C/min | Thermo-Calc |
---|---|---|---|---|
AlSi5Cu1 | 407.60 | 401.80 | 385.35 | 455.58 |
AlSi5Cu2 | 415.15 | 406.65 | 381.90 | 447.46 |
AlSi5Cu4 | 420.15 | 415.10 | 390.10 | 433.98 |
AlSi7Cu1 | 434.75 | 429.60 | 413.80 | 468.04 |
AlSi7Cu2 | 439.70 | 422.40 | 404.95 | 459.88 |
AlSi7Cu4 | 442.25 | 434.75 | 411.45 | 445.00 |
AlSi9Cu1 | 467.05 | 452.225 | 451.32 | 476.38 |
AlSi9Cu2 | 466.55 | 454.85 | 445.65 | 468.11 |
AlSi9Cu4 | 461.15 | 456.60 | 442.98 | 456.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Đjurdjević, M.B.; Jovanović, V.; Komatina, M.; Stopic, S. The Specificity of Determining the Latent Heat of Solidification of Cast Hypoeutectic AlSiCu Alloys Using the DSC Method. Materials 2024, 17, 4228. https://doi.org/10.3390/ma17174228
Đjurdjević MB, Jovanović V, Komatina M, Stopic S. The Specificity of Determining the Latent Heat of Solidification of Cast Hypoeutectic AlSiCu Alloys Using the DSC Method. Materials. 2024; 17(17):4228. https://doi.org/10.3390/ma17174228
Chicago/Turabian StyleĐjurdjević, Mile B., Vladimir Jovanović, Mirko Komatina, and Srecko Stopic. 2024. "The Specificity of Determining the Latent Heat of Solidification of Cast Hypoeutectic AlSiCu Alloys Using the DSC Method" Materials 17, no. 17: 4228. https://doi.org/10.3390/ma17174228
APA StyleĐjurdjević, M. B., Jovanović, V., Komatina, M., & Stopic, S. (2024). The Specificity of Determining the Latent Heat of Solidification of Cast Hypoeutectic AlSiCu Alloys Using the DSC Method. Materials, 17(17), 4228. https://doi.org/10.3390/ma17174228