Effect of Coherent Nanoprecipitate on Strain Hardening of Al Alloys: Breaking through the Strength-Ductility Trade-Off
Abstract
:1. Introduction
2. Materials and Methods
3. Dislocation-Based Strain Hardening Model Framework
3.1. Philosophy, Framework, and Assumptions
3.2. A Model for Dislocation Density
3.2.1. A Concise Description for Irreversible Thermodynamics of Dislocation
3.2.2. Further Thermo-Kinetic Introduction in Present Modeling
3.3. A Thermo-Kinetic Model for Dislocation Evolution
4. Model Validation
4.1. Yield Stress Increment
4.2. Stress-Strain Curve
4.3. Dislocation Density
5. Model Prediction
5.1. Prediction of Stress-Strain Responses
5.2. Prediction of Strain Hardening and Strain-Rate Hardening
5.3. Predictions of Dislocation-Related Variables
6. Discussion
6.1. Trade-Off Relationships
6.1.1. Trade-Off Relationships in Single PD
6.1.2. Trade-Off Relationships in Multiple PDs
6.2. How to Break Trade-Offs
6.2.1. Cooperative and Individual Strengthening
6.2.2. Breaking Trade-Offs by Enhancing Activation Volume
6.3. Designing and by Optimizing Trade-Offs
7. Conclusions
- (1)
- Considering dislocation nucleation, gliding, and annihilation, a dislocation-based strain hardening framework is established in terms of irreversible thermodynamics, where and of CNPs are coupled through cooperative and of coherency, order, and Orowan strengthening.
- (2)
- The variations in are attributed to the modifications in strengthening mechanism, whereas the variations in are linked to , and in turn to , independent of variations in , , or .
- (3)
- The trade-off between and is as a consequence of the trade-off between and . Based on this, the trade-off between and can be broken by improving the through cooperating coherency, order, and Orowan strengthening.
- (4)
- Following the high -high GS criterion, a new strategy is proposed to optimize mechanical properties: high for dislocations nucleation controlled by improving , and high GS for dislocations gliding governed by appropriate accelerating .
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, Z.; Ma, T.; Yang, X.; Li, W.; Xu, Q.; Li, Y.; Li, J.; Vairis, A. Comprehensive investigation on linear friction welding a dissimilar material joint between Ti17(α+β) and Ti17(β): Microstructure evolution, failure mechanisms, with simultaneous optimization of tensile and fatigue properties. Mater. Sci. Eng. A 2024, 909, 146818. [Google Scholar] [CrossRef]
- Liu, S.; Qian, L.H.; Meng, J.Y.; Li, D.D.; Ma, P.H.; Zhang, F.C. Simultaneously increasing both strength and ductility of Fe-Mn-C twinning-induced plasticity steel via Cr/Mo alloying. Scr. Mater. 2017, 127, 10–14. [Google Scholar] [CrossRef]
- Ovid’Ko, I.A.; Valiev, R.Z.; Zhu, Y.T. Review on superior strength and enhanced ductility of metallic nanomaterials. Prog. Mater. Sci. 2018, 94, 462–540. [Google Scholar] [CrossRef]
- Chen, Y.; Weyland, M.; Hutchinson, C.R. The effect of interrupted aging on the yield strength and uniform elongation of precipitation-hardened Al alloys. Acta Mater. 2013, 61, 5877–5894. [Google Scholar] [CrossRef]
- Teixeira, J.D.C.; Bourgeois, L.; Sinclair, C.W.; Hutchinson, C.R. The effect of shear-resistant, plate-shaped precipitates on the work hardening of Al alloys: Towards a prediction of the strength–elongation correlation. Acta Mater. 2009, 57, 6075–6089. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Qu, Z.; Xu, L.; Liu, R.; Zhang, P.; Zhang, Z.F.; Langdon, T.G. Relationship between strength and uniform elongation of metals based on an exponential hardening law. Acta Mater. 2022, 231, 117866. [Google Scholar] [CrossRef]
- Wu, S.; Soreide, H.S.; Chen, B.; Bian, J.; Yang, C.; Li, C.; Zhang, P.; Cheng, P.; Zhang, J.; Peng, Y.; et al. Freezing solute atoms in nanograined aluminum alloys via high-density vacancies. Nat. Commun. 2022, 13, 3495. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, H.; Zhang, M.-X.; Addad, A.; Kong, Y.; Lezaack, M.B.; Gan, W.; Chen, Z.; Ji, G. Break through the strength-ductility trade-off dilemma in aluminum matrix composites via precipitation-assisted interface tailoring. Acta Mater. 2023, 242, 118470. [Google Scholar] [CrossRef]
- Jiang, S.H.; Wang, H.; Wu, Y.; Liu, X.J.; Chen, H.H.; Yao, M.J.; Gault, B.; Ponge, D.; Raabe, D.; Hirata, A.; et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature 2017, 544, 460–464. [Google Scholar] [CrossRef]
- Nie, J.F.; Chen, Y.Y.; Song, L.; Fan, Y.; Cao, Y.; Xie, K.W.; Liu, S.D.; Liu, X.F.; Zhao, Y.H.; Zhu, Y.T. Enhancing strength and ductility of Al-matrix composite via a dual-heterostructure strategy. Int. J. Plast. 2023, 171, 103825. [Google Scholar] [CrossRef]
- Ma, Y.; Hao, J.M.; Jie, J.C.; Wang, Q.; Dong, C. Coherent precipitation and strengthening in a dual-phase AlNi2Co2Fe1.5Cr1.5 high-entropy alloy. Mater. Sci. Eng. A 2019, 764, 138241. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Q.; Jiang, B.B.; Li, C.L.; Hao, J.M.; Li, X.N.; Dong, C.; Nieh, T.G. Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni,Co,Fe,Cr)14 compositions. Acta Mater. 2018, 147, 213–225. [Google Scholar] [CrossRef]
- Gu, J.; Duan, F.; Liu, S.; Cha, W.; Lu, J. Phase Engineering of Nanostructural Metallic Materials: Classification, Structures, and Applications. Chem. Rev. 2024, 124, 1247–1287. [Google Scholar] [CrossRef]
- Yang, T.; Zhao, Y.L.; Tong, Y.; Jiao, Z.B.; Wei, J.; Cai, J.X.; Han, X.D.; Chen, D.; Hu, A.; Kai, J.J.; et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science 2018, 362, 933–937. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, T.; Tan, L.; Poplawsky, J.D.; An, K.; Wang, Y.; Samolyuk, G.D.; Littrell, K.; Lupini, A.R.; Borisevich, A.; et al. Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy. Nature 2021, 595, 245–249. [Google Scholar] [CrossRef]
- Gao, J.H.; Jiang, S.H.; Zhang, H.R.; Huang, Y.H.; Guan, D.K.; Xu, Y.D.; Guan, S.K.; Bendersky, L.A.; Davydov, A.V.; Wu, Y.; et al. Facile route to bulk ultrafine-grain steels for high strength and ductility. Nature 2021, 590, 262–267. [Google Scholar] [CrossRef]
- Bertin, N.; Sills, R.B.; Cai, W. Frontiers in the Simulation of Dislocations. Annu. Rev. Mater. Res. 2020, 50, 437–464. [Google Scholar] [CrossRef]
- Rodney, D.; Ventelon, L.; Clouet, E.; Pizzagalli, L.; Willaime, F. Ab initio modeling of dislocation core properties in metals and semiconductors. Acta Mater. 2017, 124, 633–659. [Google Scholar] [CrossRef]
- Aitken, Z.H.; Sorkin, V.; Zhang, Y.-W. Atomistic modeling of nanoscale plasticity in high-entropy alloys. J. Mater. Res. 2019, 34, 1509–1532. [Google Scholar] [CrossRef]
- Hunter, A.; Preston, D.L. Analytic model of dislocation density evolution in fcc polycrystals accounting for dislocation generation, storage, and dynamic recovery mechanisms. Int. J. Plast. 2022, 151, 103178. [Google Scholar] [CrossRef]
- Po, G.; Mohamed, M.S.; Crosby, T.; Erel, C.; El-Azab, A.; Ghoniem, N. Recent Progress in Discrete Dislocation Dynamics and Its Applications to Micro Plasticity. JOM 2014, 66, 2108–2120. [Google Scholar] [CrossRef]
- Lavenstein, S.; El-Awady, J.A. Micro-scale fatigue mechanisms in metals: Insights gained from small-scale experiments and discrete dislocation dynamics simulations. Curr. Opin. Solid State Mater. Sci. 2019, 23, 100765. [Google Scholar] [CrossRef]
- Luscher, D.J.; Mayeur, J.R.; Mourad, H.M.; Hunter, A.; Kenamond, M.A. Coupling continuum dislocation transport with crystal plasticity for application to shock loading conditions. Int. J. Plast. 2016, 76, 111–129. [Google Scholar] [CrossRef]
- Mayeur, J.R.; Mourad, H.M.; Luscher, D.J.; Hunter, A.; A Kenamond, M.A. Numerical implementation of a crystal plasticity model with dislocation transport for high strain rate applications. Model. Simul. Mater. Sci. Eng. 2016, 24, 045013. [Google Scholar] [CrossRef]
- Sandfeld, S.; Thawinan, E.; Wieners, C. A link between microstructure evolution and macroscopic response in elasto-plasticity: Formulation and numerical approximation of the higher-dimensional continuum dislocation dynamics theory. Int. J. Plast. 2015, 72, 1–20. [Google Scholar] [CrossRef]
- Starkey, K.; Winther, G.; El-Azab, A. Theoretical development of continuum dislocation dynamics for finite-deformation crystal plasticity at the mesoscale. J. Mech. Phys. Solids 2020, 139, 103926. [Google Scholar] [CrossRef]
- Nguyen, T.; Fensin, S.J.; Luscher, D.J. Dynamic crystal plasticity modeling of single crystal tantalum and validation using Taylor cylinder impact tests. Int. J. Plast. 2021, 139, 102940. [Google Scholar] [CrossRef]
- Yaghoobi, M.; Voyiadjis, G.Z.; Sundararaghavan, V. Crystal Plasticity Simulation of Magnesium and Its Alloys: A Review of Recent Advances. Crystals 2021, 11, 435. [Google Scholar] [CrossRef]
- Kocks, U.F.; Mecking, H. Physics and phenomenology of strain hardening: The FCC case. Prog. Mater. Sci. 2003, 48, 171–273. [Google Scholar] [CrossRef]
- Cheng, L.M.; Poole, W.J.; Embury, J.D.; Lloyd, D.J. The influence of precipitation on the work-hardening behavior of the aluminum alloys AA6111 and AA7030. Met. Mater. Trans. A 2003, 34, 2473–2481. [Google Scholar] [CrossRef]
- Simar, A.; Bréchet, Y.; de Meester, B.; Denquin, A.; Pardoen, T. Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of an aluminum alloy 6005A-T6. Acta Mater. 2007, 55, 6133–6143. [Google Scholar] [CrossRef]
- Fazeli, F.; Poole, W.J.; Sinclair, C.W. Modeling the effect of Al3Sc precipitates on the yield stress and work hardening of an Al–Mg–Sc alloy. Acta Mater. 2008, 56, 1909–1918. [Google Scholar] [CrossRef]
- Lei, M.; Sun, G.; Yang, G.; Wen, B. A computational mechanical constitutive modeling method based on thermally-activated microstructural evolution and strengthening mechanisms. Int. J. Plast. 2024, 173, 103881. [Google Scholar] [CrossRef]
- Kocks, U.F.; Argon, A.S.; Ashby, M.F. 3. Kinetics. Prog. Mater. Sci. 1975, 19, 68–109. [Google Scholar] [CrossRef]
- Liu, F. Nucleation/growth design by thermo-kinetic partition. J. Mater. Sci. Technol. 2023, 155, 72–81. [Google Scholar] [CrossRef]
- Bao, H.W.; Xu, H.D.; Li, Y.; Bai, H.Z.; Ma, F. The interaction mechanisms between dislocations and nano-precipitates in CuFe alloys: A molecular dynamic simulation. Int. J. Plast. 2022, 155, 103317. [Google Scholar] [CrossRef]
- Argon, A.S. Strengthening Mechanisms in Crystal Plasticity; Oxford University Press on Demand: New York, NY, USA, 2008. [Google Scholar]
- Guo, Z.G.; Ma, T.J.; Yang, X.W.; Tao, J.; Li, J.; Li, W.Y.; Vairis, A. In-situ investigation on dislocation slip concentrated fracture mechanism of linear friction welded dissimilar Ti17(α+β)/Ti17(β) titanium alloy joint. Mater. Sci. Eng. A 2023, 872, 144991. [Google Scholar] [CrossRef]
- Shi, P.J.; Ren, W.L.; Zheng, T.X.; Ren, Z.M.; Hou, X.L.; Peng, J.C.; Hu, P.F.; Zhong, Y.B.; Liaw, P.K. Enhanced strength–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae. Nat. Commun. 2019, 10, 489. [Google Scholar] [CrossRef]
- Yasnikov, I.S.; Vinogradov, A.; Estrin, Y. Revisiting the Considère criterion from the viewpoint of dislocation theory fundamentals. Scr. Mater. 2014, 76, 37–40. [Google Scholar] [CrossRef]
- Vinogradov, A.; Yasnikov, I.S.; Matsuyama, H.; Uchida, M.; Kaneko, Y.; Estrin, Y. Controlling strength and ductility: Dislocation-based model of necking instability and its verification for ultrafine grain 316L steel. Acta Mater. 2016, 106, 295–303. [Google Scholar] [CrossRef]
- Rivera-Díaz-Del-Castillo, P.E.J.; Huang, M. Dislocation annihilation in plastic deformation: I. Multiscale irreversible thermodynamics. Acta Mater. 2012, 60, 2606–2614. [Google Scholar] [CrossRef]
- Nes, E. Modelling of work hardening and stress saturation in FCC metals. Prog. Mater. Sci. 1997, 41, 129–193. [Google Scholar] [CrossRef]
- He, Y.Q.; Song, S.J.; Du, J.L.; Peng, H.R.; Ding, Z.G.; Hou, H.Y.; Huang, L.K.; Liu, Y.C.; Liu, F. Thermo-kinetic connectivity by integrating thermo-kinetic correlation and generalized stability. J. Mater. Sci. Technol. 2022, 127, 225–235. [Google Scholar] [CrossRef]
- Xu, X.Y.; Huang, C.P.; Wang, H.Y.; Li, Y.Z.; Huang, M.X. Rate-dependent transition of dislocation mechanisms in a magnesium alloy. Acta Mater. 2024, 263, 119474. [Google Scholar] [CrossRef]
- Liu, R.D.; Li, Y.Z.; Lin, L.; Huang, C.P.; Cao, Z.H.; Huang, M.X. Strain rate sensitivity of a 1.5 GPa nanotwinned steel. J. Iron Steel Res. Int. 2021, 28, 1352–1356. [Google Scholar] [CrossRef]
- Galindo-Nava, E.I.; Sietsma, J.; Rivera-Díaz-Del-Castillo, P.E.J. Dislocation annihilation in plastic deformation: II. Kocks–Mecking Analysis. Acta Mater. 2012, 60, 2615–2624. [Google Scholar] [CrossRef]
- Huang, C.P.; Wang, M.; Zhu, K.Y.; Perlade, A.; Huang, M.X. Carbon-induced negative strain-rate sensitivity in a quenching and partitioning steel. Acta Mater. 2023, 255, 119099. [Google Scholar] [CrossRef]
- Ardell, A.J. Precipitation hardening. Metall. Trans. A 1985, 16, 2131–2165. [Google Scholar] [CrossRef]
- Armstrong, R.W.; Walley, S.M. High strain rate properties of metals and alloys. Int. Mater. Rev. 2008, 53, 105–128. [Google Scholar] [CrossRef]
- Li, Y.Z.; Huang, M.X. A dislocation-based flow rule with succinct power-law form suitable for crystal plasticity finite element simulations. Int. J. Plast. 2021, 138, 102921. [Google Scholar] [CrossRef]
- Choi, I.-C.; Brandl, C.; Schwaiger, R. Thermally activated dislocation plasticity in body-centered cubic chromium studied by high-temperature nanoindentation. Acta Mater. 2017, 140, 107–115. [Google Scholar] [CrossRef]
- Decker, R.F. alloy design, using second phases. Met. Trans. 1973, 4, 2495–2518. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, L.K.; Zhang, B.; Chen, Y.Z.; Liu, F. Microstructural evolution and strengthening mechanism of an Al-Si-Mg alloy processed by high-pressure torsion with different heat treatments. Mater. Sci. Eng. A 2020, 794, 139932. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, L.K.; Zhang, B.; Chen, Y.Z.; Duan, S.Y.; Liu, G.; Yang, C.L.; Liu, F. Enhanced strength and ductility of A356 alloy due to composite effect of near-rapid solidification and thermo-mechanical treatment. Mater. Sci. Eng. A 2019, 753, 168–178. [Google Scholar] [CrossRef]
- Marquis, E.A.; Seidman, D.N.; Dunand, D.C. Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys [Acta Materialia 50(16), pp. 4021–4035]. Acta Mater. 2003, 51, 285–287. [Google Scholar] [CrossRef]
- Jeon, S.M.; Park, J.K. Transition behaviour of deformation mode from shearing to looping in Al–Li single crystals. Philos. Mag. A 1994, 70, 493–504. [Google Scholar] [CrossRef]
- Jeon, S.M.; Park, J.K. Precipitation strengthening behavior of Al Li single crystals. Acta Mater. 1996, 44, 1449–1455. [Google Scholar] [CrossRef]
- Ahlers, M.; Barceló, G.; Rapacioli, R. A model for the rubber-like behaviour in Cu Zn Al martensites. Scr. Met. 1978, 12, 1075–1078. [Google Scholar] [CrossRef]
- Hart, E. Theory of the tensile test. Acta Met. 1967, 15, 351–355. [Google Scholar] [CrossRef]
- Knipling, K.E.; Karnesky, R.A.; Lee, C.P.; Dunand, D.C.; Seidman, D.N. Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at.%) alloys during isochronal aging. Acta Mater. 2010, 58, 5184–5195. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Z.; Ji, G.; Zhong, S.Y.; Wang, H.W.; Borbély, A.; Ke, Y.B.; Bréchet, Y. Experimental and modelling assessment of ductility in a precipitation hardening AlMgScZr alloy. Int. J. Plast. 2021, 139, 102971. [Google Scholar] [CrossRef]
- De Luca, A.; Seidman, D.N.; Dunand, D.C. Effects of Mo and Mn microadditions on strengthening and over-aging resistance of nanoprecipitation-strengthened Al-Zr-Sc-Er-Si alloys. Acta Mater. 2019, 165, 1–14. [Google Scholar] [CrossRef]
- Seidman, D.N.; Marquis, E.A.; Dunand, D.C. Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys. Acta Mater. 2002, 50, 4021–4035. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, P.; Liang, F.; Liu, F. Achieve high plasticity and strength in 6016 alloy by high-pressure torsion combined with post-aging treatments. J. Mater. Res. Technol. 2023, 22, 2967–2982. [Google Scholar] [CrossRef]
- Nabarro, F. Work hardening and dynamical recovery of F.C.C. metals in multiple glide. Acta Met. 1989, 37, 1521–1546. [Google Scholar] [CrossRef]
- Liu, F.; Yang, C.; Yang, G.; Zhou, Y. Additivity rule, isothermal and non-isothermal transformations on the basis of an analytical transformation model. Acta Mater. 2007, 55, 5255–5267. [Google Scholar] [CrossRef]
- Kempen, A.; Sommer, F.; Mittemeijer, E. The isothermal and isochronal kinetics of the crystallisation of bulk amorphous Pd40Cu30P20Ni10. Acta Mater. 2002, 50, 1319–1329. [Google Scholar] [CrossRef]
- Ye, J.S.; Hsu, T.Y.; Chang, H.B. On the application of the additivity rule in pearlitic transformation in low alloy steels. Met. Mater. Trans. A 2003, 34, 1259–1264. [Google Scholar] [CrossRef]
- Kuban, M.B.; Jayaraman, R.; Hawbolt, E.B.; Brimacombe, J.K. An assessment of the additivity principle in predicting continuous-cooling austenite-to-pearlite transformation kinetics using isothermal transformation data. Met. Trans. A 1986, 17, 1493–1503. [Google Scholar] [CrossRef]
- Olson, G.B.; Cohen, M. A general mechanism of martensitic nucleation: Part III. Kinetics of martensitic nucleation. Met. Trans. A 1976, 7, 1915–1923. [Google Scholar] [CrossRef]
- Li, Y.Z.; Liang, Z.Y.; Huang, M.X. Strengthening contributions of dislocations and twins in warm-rolled TWIP steels. Int. J. Plast. 2022, 150, 103198. [Google Scholar] [CrossRef]
- Wu, P.; Hu, J.-Q.; Zhang, Y.-B.; Song, S.-J.; Li, Y.; Wang, H.-Y.; Yuan, G.; Liu, F. Generalized stability criterion for columnar to equiaxed grain transition during solidification upon vertical twin roll casting. Trans. Nonferrous Met. Soc. China 2024, 34, 1365–1379. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, Y.B.; Hu, J.Q.; Song, S.J.; Li, Y.; Wang, H.Y.; Yuan, G.; Wang, Z.D.; Wei, S.Z.; Liu, F. Generalized stability criterion for controlling solidification segregation upon twin-roll casting. J. Mater. Sci. Technol. 2023, 134, 163–177. [Google Scholar] [CrossRef]
- Marquis, E.A.; Seidman, D.N.; Dunand, D.C. Effect of Mg addition on the creep and yield behavior of an Al–Sc alloy. Acta Mater. 2003, 51, 4751–4760. [Google Scholar] [CrossRef]
- Fuller, C.B.; Seidman, D.N.; Dunand, D.C. Mechanical properties of Al(Sc,Zr) alloys at ambient and elevated temperatures. Acta Mater. 2003, 51, 4803–4814. [Google Scholar] [CrossRef]
- Sendrowicz, A.; Myhre, A.O.; Yasnikov, I.S.; Vinogradov, A. Stored and dissipated energy of plastic deformation revisited from the viewpoint of dislocation kinetics modelling approach. Acta Mater. 2022, 237, 118190. [Google Scholar] [CrossRef]
- Zhang, P.; Shi, K.K.; Bian, J.J.; Zhang, J.Y.; Peng, Y.; Liu, G.; Deschamps, A.; Sun, J. Solute cluster evolution during deformation and high strain hardening capability in naturally aged Al–Zn–Mg alloy. Acta Mater. 2021, 207, 116682. [Google Scholar] [CrossRef]
- Ungár, T.; Ott, S.; Sanders, P.G.; Borbély, A.; Weertman, J. Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis. Acta Mater. 1998, 46, 3693–3699. [Google Scholar] [CrossRef]
- de Keijser, T.H.; Langford, J.I.; Mittemeijer, E.J.; Vogels, A.B.P. Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening. J. Appl. Crystallogr. 1982, 15, 308–314. [Google Scholar] [CrossRef]
- Ribárik, G.; Jóni, B.; Ungár, T. The Convolutional Multiple Whole Profile (CMWP) Fitting Method, a Global Optimization Procedure for Microstructure Determination. Crystals 2020, 10, 623. [Google Scholar] [CrossRef]
- Jeong, H.T.; Kim, W.J. Effects of grain size and Al addition on the activation volume and strain-rate sensitivity of CoCrFeMnNi high-entropy alloy. J. Mater. Sci. Technol. 2023, 143, 242–252. [Google Scholar] [CrossRef]
- Wang, M.; Xu, X.Y.; Wang, H.Y.; He, L.H.; Huang, M.X. Evolution of dislocation and twin densities in a Mg alloy at quasi-static and high strain rates. Acta Mater. 2020, 201, 102–113. [Google Scholar] [CrossRef]
- Christopher, J.; Singh, B.K.; Reddy, G.V.P.; Vasudevan, M. Assessment of activation volume in 304L SS at high temperatures. Mater. Sci. Eng. A 2022, 860, 144326. [Google Scholar] [CrossRef]
- Wang, L.J.; Wang, L.; Zhou, S.C.; Xiao, Q.; Xiao, Y.; Wang, X.T.; Cao, T.Q.; Ren, Y.; Liang, Y.J.; Wang, L.; et al. Precipitation and micromechanical behavior of the coherent ordered nanoprecipitation strengthened Al-Cr-Fe-Ni-V high entropy alloy. Acta Mater. 2021, 216, 117121. [Google Scholar] [CrossRef]
- Kozeschnik, E. Modeling Solid-State Precipitation; Momentum Press: New York, NY, USA, 2013. [Google Scholar]
- Ma, K.; Wen, H.; Hu, T.; Topping, T.D.; Isheim, D.; Seidman, D.N.; Lavernia, E.J.; Schoenung, J.M. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 2014, 62, 141–155. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, K.Y.; Wen, S.P.; Huang, H.; Nie, Z.R.; Zhou, D.J. The study on the coarsening process and precipitation strengthening of Al3Er precipitate in Al–Er binary alloy. J. Alloys Compd. 2014, 610, 27–34. [Google Scholar] [CrossRef]
- Nadgornyi, E. Dislocation dynamics and mechanical properties of crystals. Prog. Mater. Sci. 1988, 31, 1–530. [Google Scholar] [CrossRef]
- Andersen, S.J.; Marioara, C.D.; Vissers, R.; Frøseth, A.; Zandbergen, H.W. The structural relation between precipitates in Al–Mg–Si alloys, the Al-matrix and diamond silicon, with emphasis on the trigonal phase U1-MgAl2Si2. Mater. Sci. Eng. A 2007, 444, 157–169. [Google Scholar] [CrossRef]
- Schüler, P.; Frank, R.; Uebel, D.; Fischer, S.F.; Bührig-Polaczek, A.; Fleck, C. Influence of heat treatments on the microstructure and mechanical behaviour of open cell AlSi7Mg0.3 foams on different lengthscales. Acta Mater. 2016, 109, 32–45. [Google Scholar] [CrossRef]
- Lasagni, F.; Mingler, B.; Dumont, M.; Degischer, H.P. Precipitation kinetics of Si in aluminium alloys. Mater. Sci. Eng. A 2008, 480, 383–391. [Google Scholar] [CrossRef]
Symbol | Description [Unit] | Symbol | Description (Unit) |
---|---|---|---|
Strengthening coefficient | Kinetic energy barrier (kJ/mol) | ||
Geometrical factor | Zero-stress energy barrier for coherency strengthening (kJ/mol) | ||
Burgers vector [nm] | Zero-stress energy barrier for order strengthening (kJ/mol) | ||
Temperature-dependent constant | Zero-stress energy barrier for Orowan strengthening (kJ/mol) | ||
Generalized stability | Contributions ratio for coherency strengthening | ||
Thermodynamic driving force [MPa] | Contributions ratio for order strengthening | ||
Driving force from applied shear stress [MPa] | Contributions ratio for Orowan strengthening | ||
Driving force from gliding resistance [MPa] | Radius of CNPs (nm) | ||
Shear strain interval [%] | Dislocation density (m−2) | ||
total entropy change rate [kJ/(m2s)] | Initial dislocation density (m−2) | ||
Entropy flux rate between system and surroundings [kJ/(m2s)] | Mobile dislocation density (m−2) | ||
Entropy generation rate [kJ/(m2s)] | True stress (MPa) | ||
Dislocations storage energy [kJ/m2] | Lattice true stress (MPa) | ||
Mechanical work [kJ/m2] | Forest dislocation true stress (MPa) | ||
Dissipated energies of dislocation annihilation [kJ/m2] | Precipitate true stress (MPa) | ||
Dissipated energies of dislocation generation [kJ/m2] | True stress due to coherency strengthening (MPa) | ||
Dissipated energies of dislocation glide [kJ/m2] | True stress due to order strengthening (MPa) | ||
Elastic energy of dislocations per unit length [kJ/m2] | True stress due to Orowan strengthening (MPa) | ||
Dislocation line tension [N] | Yield true stress (MPa) | ||
Shear strain [%] | Strain hardening rate (MPa) | ||
Shear strain rate [s−1] | Applied shear stress [MPa] | ||
Reference strain rate [s−1] | Shear resistance of lattice [MPa] | ||
Shear modulus of matrix [MPa] | Shear stress of forest dislocation [MPa] | ||
Dislocation storage coefficients | Shear stress of forest dislocation at yielding point [MPa] | ||
constant dislocation storage coefficient | Average shear resistance [MPa] | ||
Kinetic recovery coefficients [m−1] | Shear resistance of forest dislocation [MPa] | ||
constant kinetic recovery coefficient [m−1] | Peak shear resistance for coherency strengthening [MPa] | ||
Boltzmann’s constant [J/K] | Peak shear resistance for order strengthening [MPa] | ||
Resistive force [N] | Peak shear resistance for Orowan strengthening [MPa] | ||
Peak resistive force [N] | Applied shear stress at yielding point [MPa] | ||
Mean gliding distance [m] | Absolute temperature [K] | ||
Strain rate sensitivity exponent | Dislocation gliding velocity [m/s] | ||
Number of dislocation jogs per unit length | Atomic vibration frequency [s−1] | ||
Number of CNPs for coherency strengthening | Volume fraction of CNPs [%] | ||
Number of CNPs for order strengthening | |||
Number of CNPs for Orowan strengthening |
Si | Mg | Fe | Ti | Zn | Cu | Al |
---|---|---|---|---|---|---|
1.0–1.5 | 0.25–0.6 | 0.15–0.3 | 0.2 | 0.1 | 0.2 | Bal |
Parameter | Unit | Al-Zn-Mg | Al-Mg-Si |
---|---|---|---|
MPa | 200 | 181 | |
MPa | 458 | 223 | |
/ | 3.83 | 3.81 | |
MPa | 658 | 404 | |
MPa | 30 | 55 | |
MPa | 483 | 265 | |
/ | 1.9 108 | 1.06 108 | |
m−1 | 2.50 | 2.49 | |
(Model/Exp.) | MPa | 23.1%/24.2% | 25.7%/26.1% |
Parameter | Unit | Value | Refs. |
---|---|---|---|
Strengthening coefficient for flow stress of forest dislocation, | / | 0.15 | [5] |
Shear modulus of matrix, | MPa | 25.4 103 | [5] |
nm | 0.286 | [62] | |
Poisson’s ratio, | Wm−1K−1 | 0.33 | [5] |
Shear modulus of the precipitate, | MPa | 37.2 103 | [5] |
Antiphase boundaries energy per unit area, | J m−2 | 0.5 | [62] |
Linear elastic misfit, | / | 0.0179 | [62] |
Taylor factor, | ms−1 | 3.06 | [62] |
Line tension of dislocation, | N | 1.072 10−9 | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, P.; Song, K.; Liu, F. Effect of Coherent Nanoprecipitate on Strain Hardening of Al Alloys: Breaking through the Strength-Ductility Trade-Off. Materials 2024, 17, 4197. https://doi.org/10.3390/ma17174197
Wu P, Song K, Liu F. Effect of Coherent Nanoprecipitate on Strain Hardening of Al Alloys: Breaking through the Strength-Ductility Trade-Off. Materials. 2024; 17(17):4197. https://doi.org/10.3390/ma17174197
Chicago/Turabian StyleWu, Pan, Kexing Song, and Feng Liu. 2024. "Effect of Coherent Nanoprecipitate on Strain Hardening of Al Alloys: Breaking through the Strength-Ductility Trade-Off" Materials 17, no. 17: 4197. https://doi.org/10.3390/ma17174197
APA StyleWu, P., Song, K., & Liu, F. (2024). Effect of Coherent Nanoprecipitate on Strain Hardening of Al Alloys: Breaking through the Strength-Ductility Trade-Off. Materials, 17(17), 4197. https://doi.org/10.3390/ma17174197