Predicting Sodium-Ion Battery Performance through Surface Chemistry Analysis and Textural Properties of Functionalized Hard Carbons Using AI
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation and Characterization of Functionalized Hard Carbons
2.2. Electrochemical Experiments
2.3. Artificial Neural Network (ANN) to Study the Performance in Sodium-Ion Batteries
3. Results and Discussion
3.1. Physical-Chemical Characterization of Hard Carbons and Development of ANN Algorithm
3.2. Development of a Simulation Model in MATLAB-Simulink
3.3. Comparison of Machine Learning Approaches for Performance Prediction in Energy Storage Systems
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.W.; Adit, G.; Li, L.; Zhang, Y.X.; Chua, D.H.C.; Lee, P.S. Optimization Strategies Toward Functional Sodium-Ion Batteries. Energy Environ. Mater. 2023, 6, e12633. [Google Scholar] [CrossRef]
- Delmas, C. Sodium and Sodium-Ion Batteries: 50 Years of Research. Adv. Energy Mater. 2018, 8, 1703137. [Google Scholar] [CrossRef]
- Rudola, A.; Sayers, R.; Wright, C.J.; Barker, J. Opportunities for Moderate-Range Electric Vehicles Using Sustainable Sodium-Ion Batteries. Nat. Energy 2023, 8, 215–218. [Google Scholar] [CrossRef]
- Romero-Cano, L.A.; García-Rosero, H.; Carrasco-Marín, F.; Pérez-Cadenas, A.F.; González-Gutiérrez, L.V.; Zárate-Guzmán, A.I.; Ramos-Sánchez, G. Surface Functionalization to Abate the Irreversible Capacity of Hard Carbons Derived from Grapefruit Peels for Sodium-Ion Batteries. Electrochim. Acta 2019, 326, 134973. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, T.; Li, W.; Li, T.; Zhang, L.; Zhang, X.; Wang, Z. Engineering of Sodium-Ion Batteries: Opportunities and Challenges. Engineering 2022, 24, 172–183. [Google Scholar] [CrossRef]
- Feng, B.; Xu, L.; Yu, Z.; Liu, G.; Liao, Y.; Chang, S.; Hu, J. Wood-Derived Carbon Anode for Sodium-Ion Batteries. Electrochem. Commun. 2023, 148, 107439. [Google Scholar] [CrossRef]
- Wan, Y.; Liu, Y.; Chao, D.; Li, W.; Zhao, D. Recent Advances in Hard Carbon Anodes with High Initial Coulombic Efficiency for Sodium-Ion Batteries. Nano Mater. Sci. 2023, 5, 189–201. [Google Scholar] [CrossRef]
- Qiu, Z.; Cao, F.; Pan, G.; Li, C.; Chen, M.; Zhang, Y.; He, X.; Xia, Y.; Xia, X.; Zhang, W. Carbon Materials for Metal-Ion Batteries. ChemPhysMater 2023, 2, 267–281. [Google Scholar] [CrossRef]
- Luo, Y.-F.; Lu, K.-Y. An Online State of Health Estimation Technique for Lithium-Ion Battery Using Artificial Neural Network and Linear Interpolation. J. Energy Storage 2022, 52, 105062. [Google Scholar] [CrossRef]
- Costa, N.; Sánchez, L.; Anseán, D.; Dubarry, M. Li-Ion Battery Degradation Modes Diagnosis via Convolutional Neural Networks. J. Energy Storage 2022, 55, 105558. [Google Scholar] [CrossRef]
- Beltran, H.; Sansano, E.; Pecht, M. Machine Learning Techniques Suitability to Estimate the Retained Capacity in Lithium-Ion Batteries from Partial Charge/Discharge Curves. J. Energy Storage 2023, 59, 106346. [Google Scholar] [CrossRef]
- Gasper, P.; Schiek, A.; Smith, K.; Shimonishi, Y.; Yoshida, S. Predicting Battery Capacity from Impedance at Varying Temperature and State of Charge Using Machine Learning. Cell Rep. Phys. Sci. 2022, 3, 101184. [Google Scholar] [CrossRef]
- Zhao, Y.; Altschuh, P.; Santoki, J.; Griem, L.; Tosato, G.; Selzer, M.; Koeppe, A.; Nestler, B. Characterization of Porous Membranes Using Artificial Neural Networks. Acta Mater. 2023, 253, 118922. [Google Scholar] [CrossRef]
- Angermann, C.; Haltmeier, M.; Laubichler, C.; Jónsson, S.; Schwab, M.; Moravová, A.; Kiesling, C.; Kober, M.; Fimml, W. Surface Topography Characterization Using a Simple Optical Device and Artificial Neural Networks. Eng. Appl. Artif. Intell. 2023, 123, 106337. [Google Scholar] [CrossRef]
- Esfe, M.H.; Hajian, M.; Toghraie, D.; Rahmanian, A.; Pirmoradian, M.; Rostamian, H. Prediction the Dynamic Viscosity of MWCNT-Al2O3 (30:70)/Oil 5W50 Hybrid Nano-Lubricant Using Principal Component Analysis (PCA) with Artificial Neural Network (ANN). Egypt. Inform. J. 2022, 23, 427–436. [Google Scholar] [CrossRef]
- Morsy, A.M.; Abd Elmoaty, A.E.M.; Harraz, A.B. Predicting Mechanical Properties of Engineering Cementitious Composite Reinforced with PVA Using Artificial Neural Network. Case Stud. Constr. Mater. 2022, 16, e00998. [Google Scholar] [CrossRef]
- Guzmán, G.; Vazquez-Arenas, J.; Ramos-Sánchez, G.; Bautista-Ramírez, M.; González, I. Improved Performance of LiFePO4cathode for Li-Ion Batteries through Percolation Studies. Electrochim. Acta 2017, 247, 451–459. [Google Scholar] [CrossRef]
- Martínez-Cruz, M.A.; Ramos-Sánchez, G.; Oliver-Tolentino, M.; Pfeiffer, H.; González, I. Improving the Structural Reversibility of LiNiO2 by Incorporation of Cu, an Electrochemical and in-Situ XRD Study. J. Alloys Compd. 2022, 923, 166328. [Google Scholar] [CrossRef]
- Sierra-Uribe, J.H.; Alcaraz-Espinoza, J.J.; Martínez-Cruz, M.Á.; Ramos-Sánchez, G.; Guzmán-González, G.; Pfeiffer, H.; González, I. Impact of Ball Milling on the Energy Storage Properties of LiFePO4 Cathodes for Lithium-Ion Batteries. J. Solid. State Electrochem. 2024, 28, 3481–3489. [Google Scholar] [CrossRef]
- Hosen, M.S.; Jaguemont, J.; Van Mierlo, J.; Berecibar, M. Battery Lifetime Prediction and Performance Assessment of Different Modeling Approaches. iScience 2021, 24, 102060. [Google Scholar] [CrossRef]
- Burden, F.; Winkler, D. Bayesian Regularization of Neural Networks. In Artificial Neural Networks. Methods in Molecular Biology; Livingstone, D.J., Ed.; Humana Press: Totowa, NJ, USA, 2009; pp. 23–42. ISBN 978-1-60327-101-1. [Google Scholar]
- Irisarri, E.; Ponrouch, A.; Palacin, M.R. Review—Hard Carbon Negative Electrode Materials for Sodium-Ion Batteries. J. Electrochem. Soc. 2015, 162, A2476–A2482. [Google Scholar] [CrossRef]
- Liu, G.; Li, X.; Lee, J.-W.; Popov, B.N. A Review of the Development of Nitrogen-Modified Carbon-Based Catalysts for Oxygen Reduction at USC. Catal. Sci. Technol. 2011, 1, 207. [Google Scholar] [CrossRef]
- Lotfabad, E.M.; Ding, J.; Cui, K.; Kohandehghan, A.; Kalisvaart, W.P.; Hazelton, M.; Mitlin, D. High-Density Sodium and Lithium Ion Battery Anodes from Banana Peels. ACS Nano 2014, 8, 7115–7129. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, W.; Zhang, C.; Chen, A.; An, F. SOC Estimation of Li-Ion Battery Using Convolutional Neural Network with U-Net Architecture. Energy 2022, 256, 124612. [Google Scholar] [CrossRef]
- Kwak, M.; Lkhagvasuren, B.; Park, J.; You, J.-H. Parameter Identification and SOC Estimation of a Battery Under the Hysteresis Effect. IEEE Trans. Ind. Electron. 2020, 67, 9758–9767. [Google Scholar] [CrossRef]
- Álvarez Antón, J.C.; García Nieto, P.J.; de Cos Juez, F.J.; Sánchez Lasheras, F.; González Vega, M.; Roqueñí Gutiérrez, M.N. Battery State-of-Charge Estimator Using the SVM Technique. Appl. Math. Model. 2013, 37, 6244–6253. [Google Scholar] [CrossRef]
- Jiang, B.; Zhu, J.; Wang, X.; Wei, X.; Shang, W.; Dai, H. A Comparative Study of Different Features Extracted from Electrochemical Impedance Spectroscopy in State of Health Estimation for Lithium-Ion Batteries. Appl. Energy 2022, 322, 119502. [Google Scholar] [CrossRef]
- Khalid, A.; Sundararajan, A.; Sarwat, A.I. An ARIMA-NARX Model to Predict Li-Ion State of Charge for Unknown Charge/Discharge Rates. In Proceedings of the 2019 IEEE Transportation Electrification Conference (ITEC-India), Bengaluru, India, 17–19 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4. [Google Scholar]
- Fan, Y.; Xiao, F.; Li, C.; Yang, G.; Tang, X. A Novel Deep Learning Framework for State of Health Estimation of Lithium-Ion Battery. J. Energy Storage 2020, 32, 101741. [Google Scholar] [CrossRef]
- Chemali, E.; Kollmeyer, P.J.; Preindl, M.; Ahmed, R.; Emadi, A. Long Short-Term Memory Networks for Accurate State-of-Charge Estimation of Li-Ion Batteries. IEEE Trans. Ind. Electron. 2018, 65, 6730–6739. [Google Scholar] [CrossRef]
- El Fallah, S.; Kharbach, J.; Hammouch, Z.; Rezzouk, A.; Ouazzani Jamil, M. State of Charge Estimation of an Electric Vehicle’s Battery Using Deep Neural Networks: Simulation and Experimental Results. J. Energy Storage 2023, 62, 106904. [Google Scholar] [CrossRef]
- Chen, J.; Feng, X.; Jiang, L.; Zhu, Q. State of Charge Estimation of Lithium-Ion Battery Using Denoising Autoencoder and Gated Recurrent Unit Recurrent Neural Network. Energy 2021, 227, 120451. [Google Scholar] [CrossRef]
- Wu, X.; Li, M.; Du, J.; Hu, F. SOC Prediction Method Based on Battery Pack Aging and Consistency Deviation of Thermoelectric Characteristics. Energy Rep. 2022, 8, 2262–2272. [Google Scholar] [CrossRef]
- Islam, J.U.; Rahman, Z.; Connolly, R. Commentary on Progressing Understanding of Online Customer Engagement: Recent Trends and Challenges. J. Internet Commer. 2021, 20, 403–408. [Google Scholar] [CrossRef]
- Oreshkin, B.N.; Dudek, G.; Pełka, P.; Turkina, E. N-BEATS Neural Network for Mid-Term Electricity Load Forecasting. Appl. Energy 2021, 293, 116918. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Yi, C.; Xu, X.; Wang, J.; Zhang, Y. EcoForecast: An Interpretable Data-Driven Approach for Short-Term Macroeconomic Forecasting Using N-BEATS Neural Network. Eng. Appl. Artif. Intell. 2022, 114, 105072. [Google Scholar] [CrossRef]
- Kannan, M.; Sundareswaran, K.; Nayak, P.S.R.; Simon, S.P. A Combined DNN-NBEATS Architecture for State of Charge Estimation of Lithium-Ion Batteries in Electric Vehicles. IEEE Trans. Veh. Technol. 2023, 72, 7328–7337. [Google Scholar] [CrossRef]
Input | GPC | GPC-AC | GPC-AC-U | GPC-AC-M |
---|---|---|---|---|
SHg (m2 g−1) | 11.00 | 6.70 | 9.80 | 3.80 |
Average pore diameter (µm) | 23.25 | 32.62 | 37.23 | 27.86 |
ID/IG | 1.24 | 1.22 | 1.39 | 1.26 |
C (%wt) | 76.26 | 80.20 | 81.75 | 79.17 |
N (%wt) | 1.71 | 1.38 | 4.74 | 2.33 |
H (%wt) | 1.74 | 1.99 | 1.82 | 1.81 |
S (%wt) | 0.04 | 0.06 | 0.06 | 0.06 |
C1s, 284.7 eV (% peak) | 75 | 72 | 66 | 82 |
C1s, 285.9 eV (% peak) | 17 | 15 | 19 | 10 |
C1s, 287.5 eV (% peak) | 5 | 7 | 12 | 5 |
C1s, 289.1 eV (% peak) | 3 | 6 | 3 | 2 |
O1s, 531.4 eV (% peak) | 57 | 43 | 50 | 47 |
O1s, 532.8 eV (% peak) | 23 | 32 | 30 | 26 |
O1s, 533.8 eV (% peak) | 20 | 25 | 20 | 27 |
N1s, 398.7 eV (% peak) | 53 | 39 | 61 | 37 |
N1s, 400.2 eV (% peak) | 25 | 33 | 19 | 32 |
N1s, 401.3 eV (% peak) | 22 | 23 | 14 | 31 |
N1s, 403.7 eV (% peak) | 0 | 0 | 6 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warren-Vega, W.M.; Zárate-Guzmán, A.I.; Carrasco-Marín, F.; Ramos-Sánchez, G.; Romero-Cano, L.A. Predicting Sodium-Ion Battery Performance through Surface Chemistry Analysis and Textural Properties of Functionalized Hard Carbons Using AI. Materials 2024, 17, 4193. https://doi.org/10.3390/ma17174193
Warren-Vega WM, Zárate-Guzmán AI, Carrasco-Marín F, Ramos-Sánchez G, Romero-Cano LA. Predicting Sodium-Ion Battery Performance through Surface Chemistry Analysis and Textural Properties of Functionalized Hard Carbons Using AI. Materials. 2024; 17(17):4193. https://doi.org/10.3390/ma17174193
Chicago/Turabian StyleWarren-Vega, Walter M., Ana I. Zárate-Guzmán, Francisco Carrasco-Marín, Guadalupe Ramos-Sánchez, and Luis A. Romero-Cano. 2024. "Predicting Sodium-Ion Battery Performance through Surface Chemistry Analysis and Textural Properties of Functionalized Hard Carbons Using AI" Materials 17, no. 17: 4193. https://doi.org/10.3390/ma17174193
APA StyleWarren-Vega, W. M., Zárate-Guzmán, A. I., Carrasco-Marín, F., Ramos-Sánchez, G., & Romero-Cano, L. A. (2024). Predicting Sodium-Ion Battery Performance through Surface Chemistry Analysis and Textural Properties of Functionalized Hard Carbons Using AI. Materials, 17(17), 4193. https://doi.org/10.3390/ma17174193