Enhancing Energy Storage Performance of 0.85Bi0.5Na0.5TiO3-0.15LaFeO3 Lead-Free Ferroelectric Ceramics via Buried Sintering
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, Z.Y.S.; Persson, A.E.O.; Wernersson, L.E. Reconfigurable signal modulation in a ferroelectric tunnel field-effect transistor. Nat. Commun. 2023, 14, 2530. [Google Scholar] [CrossRef] [PubMed]
- He, T.F.; Cao, Z.Z.; Li, G.R.; Jia, Y.M.; Peng, B.L. High efficiently harvesting visible light and vibration energy in (1−x)AgNbO3−xLiTaO3 solid solution around antiferroelectric-ferroelectric phase boundary for dye degradation. J. Adv. Ceram. 2022, 11, 1641–1653. [Google Scholar] [CrossRef]
- Xue, F.; He, X.; Ma, Y.C.; Zheng, D.X.; Zhang, C.H.; Li, L.J.; He, J.H.; Yu, B.; Zhang, X.X. Unraveling the origin of ferroelectric resistance switching through the interfacial engineering of layered ferroelectric-metal junctions. Nat. Commun. 2021, 12, 7291. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.Y.; Mao, J.Y.; Gao, J.; Han, C.; Wee, A.T.S.; Loh, K.P.; Chen, W. Ferroelectrics-integrated two-dimensional devices toward next-generation electronics. ACS Nano 2022, 16, 13595–13611. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Jian, X.D.; Gong, W.P.; Zhang, G.Z.; Jiang, S.L.; Yu, K.; Zhao, X.B.; Yao, Y.B.; Tao, T.; Liang, B.; et al. Field-driven merging of polarizations and enhanced electrocaloric effect in BaTiO3-based lead-free ceramics. J. Adv. Ceram. 2022, 11, 1777–1788. [Google Scholar] [CrossRef]
- Zhong, X.C.; Lin, Z.C.; Chen, C.; Wang, R.X.; Zhong, S.P.; Xu, Z.F. The role of ZnFe2O4 in the electrochemical performance of Pb-ceramic composite anode in sulfuric acid solution. Hydrometallurgy 2021, 201, 105587. [Google Scholar] [CrossRef]
- Chen, Y.; Li, L.F.; Zhou, Z.; Wang, Y.Y.; Chen, Q.; Wang, Q.Y. La2O3-modified BiYbO3-Pb(Zr,Ti)O3 termary piezoelectric ceramics with enhanced electrical properties and thermal depolarization temperature. J. Adv. Ceram. 2023, 12, 1593–1611. [Google Scholar] [CrossRef]
- Kounga, A.B.; Zhang, S.T.; Jo, W.; Granzow, T.; Rödel, J. Morphotropic phase boundary in (1 − x)Bi0.5Na0.5TiO3−xK0.5Na0.5NbO3 lead-free piezoceramics. Appl. Phys. Lett. 2008, 92, 222902. [Google Scholar] [CrossRef]
- Zidani, J.; Alaoui, I.H.; Zannen, M.; Birks, E.; Chchiyai, Z.; Majdoub, M.; Manoun, B.; Marssi, M.E.; Lahmar, A. On the lanthanide effect on functional properties of 0.94Na0.5Bi0.5TiO3-0.06BaTiO3 ceramic. Materials 2024, 17, 1783. [Google Scholar] [CrossRef]
- Uddin, S.; Ahmad, A.; Nasir, M.F.; Zaman, A.; Algahtani, A.; Tirth, V.; Zheng, G.P. Effect of BiFeO3 on the ferroelectric and energy storage properties of (Bi1/2Na1/2)0.94Ba0.06TiO3 based compositions. Inorg. Chem. Commun. 2024, 159, 111746. [Google Scholar] [CrossRef]
- Pan, Y.; Dai, Z.H.; Liu, C.X.; Zhao, X.; Yasui, S.; Cong, Y.; Gu, S.T. High energy storage properties of Nd(Mg2/3Nb1/3)O3 modified Bi0.5Na0.5TiO3 lead-free ceramics. J. Mater. Sci. 2024, 59, 3284–3296. [Google Scholar] [CrossRef]
- Jiang, Z.H.; Yang, Z.Y.; Yuan, Y.; Tang, B.; Zhang, S.R. High energy storage properties and dielectric temperature stability of (1 − x)(0.8Bi0.5Na0.5TiO3-0.2Ba0.3Sr0.4TiO3)-xNaNbO3 lead-free ceramics. J. Alloys Compd. 2021, 851, 156821. [Google Scholar] [CrossRef]
- Guo, B.; Yan, Y.; Tang, M.Y.; Wang, Z.Y.; Li, Y.; Zhang, L.Y.; Zhang, H.B.; Jin, L.; Liu, G. Energy storage performance of Na0.5Bi0.5TiO3 based lead-free ferroelectric ceramics prepared via non-uniform phase structure modification and rolling process. Chem. Eng. J. 2021, 420, 130475. [Google Scholar] [CrossRef]
- Zhang, X.R.; Xiao, Y.A.; Du, B.N.; Li, Y.M.; Wu, Y.D.; Sheng, L.Y.; Tan, W.C. Improved non-piezoelectric electric properties based on La modulated ferroelectric-ergodic relaxor transition in (Bi0.5Na0.5)TiO3-Ba(Ti, Zr)O3 ceramics. Materials 2021, 14, 6666. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.F.; Wu, P.; Liu, W.F.; Wang, S.Y.; Liu, G.Y.; Rao, G.H. Switchable ferroelectric diode effect and piezoelectric properties of Bi0.9La0.1FeO3 Ceramics. Chin. Phys. Lett. 2012, 29, 047701. [Google Scholar] [CrossRef]
- Kwon, Y.H.; Lee, G.H.; Koh, J.H. Effects of sintering temperature on the piezoelectric properties of (Bi,Na)TiO3-based composites for energy harvesting applications. Ceram. Int. 2015, 41, S792–S797. [Google Scholar] [CrossRef]
- Qiu, Y.Z.; Yu, Z.D. Effect of sintering temperature on structure and electrical properties of ZnO-added (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics. J. Mater. Sci.-Mater. Electron. 2023, 34, 88. [Google Scholar] [CrossRef]
- Leng, S.L.; Jia, F.H.; Zhong, Z.K.; Yang, Q.F.; Li, G.R.; Zheng, L.Y. Fabrication of High Tc BaTiO3-(Bi0.5Na0.5)TiO3 Lead-free positive temperature coefficient of resistivity ceramics. J. Inorg. Mater. 2015, 30, 576–580. [Google Scholar]
- Ahn, C.W.; Kim, H.S.; Woo, W.S.; Won, S.S.; Seog, H.J.; Chae, S.A.; Park, B.C.; Jang, K.B.; Ok, Y.P.; Chong, H.H.; et al. Low-temperature sintering of Bi0.5(Na,K)0.5TiO3 for multilayer ceramic actuators. J. Am. Ceram. Soc. 2015, 98, 1877–1883. [Google Scholar] [CrossRef]
- Tian, H.Y.; Kwok, K.W.; Chan, H.L.W.; Buckley, C.E. The effects of CuO-doping on dielectric and piezoelectric properties of Bi0.5Na0.5TiO3-Ba(Zr,Ti)O3 lead-free ceramics. J. Mater. Sci. 2007, 42, 9750–9755. [Google Scholar] [CrossRef]
- Kong, D.K.; Guo, A.F.; Hu, Y.B.; Zhou, X.Y.; Wu, H.L.; Li, X.J.; Qu, P.; Wang, S.Q.; Guo, S. Alumina-based ceramic cores prepared by vat photopolymerization and buried combustion method. Mater. Today Commun. 2023, 37, 107434. [Google Scholar] [CrossRef]
- Chen, R.Y.; Xie, K.S.; Zhu, H.P.; He, Q.; Li, S.S.; Wen, H.M. Improving strength and microstructure of SiC reticulated porous ceramic through in-situ generation of SiC whiskers within hollow voids. Ceram. Int. 2023, 49, 40414–40420. [Google Scholar] [CrossRef]
- Fujii, I.; Mitsui, R.; Nakashima, K.; Kumada, N.; Yabuta, H.; Shimada, M.; Watanabe, T.; Miura, K.; Wada, S. Effect of sintering condition and V-doping on the piezoelectric properties of BaTiO3-Bi(Mg1/2Ti1/2)O3-BiFeO3 ceramics. J. Cearm. Soc. Jpn. 2013, 121, 589–592. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.S.; Liu, Y.S.; Zeng, Q.F.; Hu, K.H.; Lu, Z.G.; Liang, J.J. Effect of burying sintering on the properties of ceramic cores via 3D printing. J. Manuf. Process. 2020, 57, 380–388. [Google Scholar] [CrossRef]
- Long, C.; Su, Z.; Song, H.; Xu, A.; Liu, L.; Li, Y.; Zheng, K.; Ren, W.; Wu, H.; Ding, X. Excellent energy storage properties with ultrahigh Wrec in lead-free relaxor ferroelectrics of ternary Bi0.5Na0.5TiO3-SrTiO3-Bi0.5Li0.5TiO3 via multiple synergistic optimization. Energy Storage Mater. 2024, 65, 103055. [Google Scholar] [CrossRef]
- Fan, J.T.; He, G.; Cao, Z.Z.; Cao, Y.F.; Long, Z.; Hu, Z.G. Ultrahigh energy-storage density of a lead-free 0.85Bi0.5Na0.5TiO3-0.15Ca(Nb0.5Al0.5)O3 ceramic under low electric fields. Inorg. Chem. Front. 2023, 10, 1561–1573. [Google Scholar] [CrossRef]
- Che, Z.Y.; Ma, L.; Luo, G.G.; Xu, C.; Cen, Z.Y.; Feng, Q.; Chen, X.Y.; Ren, K.L.; Luo, N.N. Phase structure and defect engineering in (Bi0.5Na0.5)TiO3-based relaxor antiferroelectrics toward excellent energy storage performance. Nano Energy 2022, 100, 107484. [Google Scholar] [CrossRef]
- Guan, P.F.; Zhang, Y.X.; Yang, J.; Zheng, M. Effect of Sm3+ doping on ferroelectric, energy storage and photoluminescence properties of BaTiO3 ceramics. Ceram. Int. 2023, 49, 11796–11802. [Google Scholar] [CrossRef]
- Shi, X.H.; Li, K.; Shen, Z.Y.; Liu, J.Q.; Chen, C.Q.; Zeng, X.J.; Zhang, B.; Song, F.S.; Luo, W.Q.; Wang, Z.M.; et al. BS0.5BNT-based relaxor ferroelectric ceramic/glass-ceramic composites for energy storage. J. Adv. Ceram. 2023, 12, 695–710. [Google Scholar] [CrossRef]
- Li, Z.P.; Li, D.X.; Shen, Z.Y.; Zeng, X.J.; Song, F.S.; Luo, W.Q.; Wang, X.C.; Wang, Z.M.; Li, Y.M. Remarkably enhanced dielectric stability and energy storage properties in BNT-BST relaxor ceramics by A-site defect engineering for pulsed power applications. J. Adv. Ceram. 2022, 11, 283–294. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, F.; Niu, Y.W.; Zhang, Z.Q.; Lei, X.Q.; Wang, Z.J. Excellent energy storage performance of perovskite high-entropy Oxide-modified (Bi0.5Na0.5)TiO3-based ceramics. ACS Appl. Electron. Mater. 2024, 6, 4698–4708. [Google Scholar] [CrossRef]
- Lin, Y.Z.; Wan, R.F.; Zheng, P.; Li, Z.H.; Wang, Y.K.; Fan, Q.L.; Zheng, L.; Zhang, Y.; Bai, W.F. Achieving remarkable energy storage performances under low electric field in Bi0.5N0.5TiO3-SrTiO3-based relaxor ferroelectric ceramics via a heterostructure doping strategy. ACS Appl. Electron. Mater. 2023, 5, 4576–4586. [Google Scholar] [CrossRef]
- Cai, Z.M.; Yang, H.; Zhu, C.Q.; Li, S.H.; Luo, B.C.; Li, A.Y.; Li, X.H.; Tian, Z.B.; Feng, P.Z. Local heterogeneous polarization enhanced superior low-field energy storage performance in lead-free relaxor ferroelectric ceramics. ACS Sustain. Chem. Eng. 2023, 11, 13729–13735. [Google Scholar] [CrossRef]
- He, J.; Liu, X.; Zhao, Y.; Du, H.; Zhang, T.; Shi, J. Dielectric stability and energy-storage performance of BNT-based relaxor ferroelectrics through Nb5+ and its excess modification. ACS Appl. Electron. Mater. 2022, 4, 735–743. [Google Scholar] [CrossRef]
- Chu, B.K.; Hao, J.G.; Li, P.; Li, Y.C.; Li, W.; Zheng, L.M.; Zeng, H.R. High-energy storage properties over a broad temperature range in La-modified BNT-based lead-free ceramics. ACS Appl. Mater. Interfaces 2022, 14, 19683–19696. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhu, X.L.; Wang, H.T.; Zhang, Y.X.; Guan, P.F.; Yan, S.G.; Zheng, M. Achieving outstanding energy storage behaviors via combinatorial optimization design in BNT-based relaxor ferroelectric ceramics under medium-low electric fields. J. Mater. Chem. C 2024, 12, 6479–6486. [Google Scholar] [CrossRef]
- Liu, T.Y.; Yan, B.; Ma, J.X.; He, Q.; An, L.N.; Chen, K.P. Enhanced energy storage properties in BNT-based ceramics with a morphotropic phase boundary modified by Sr(Mg1/3Nb2/3)O3. J. Mater. Chem. C 2023, 11, 15294–15302. [Google Scholar] [CrossRef]
- Li, X.H.; Zhu, C.Q.; Li, S.H.; Li, A.Y.; Liang, L.Q.; Cai, Z.M.; Feng, P.Z. Enhancing energy storage density of BNT-ST-based ceramics by a stepwise optimization strategy on the breakdown strength. J. Eur. Ceram. Soc. 2024, 44, 6422–6429. [Google Scholar] [CrossRef]
- Sun, M.Z.; Wang, X.M.; Li, P.; Du, J.; Fu, P.; Hao, J.G.; Li, W.; Zhai, J.W. Realizing ultrahigh breakdown strength and ultrafast discharge speed in novel barium titanate-based ceramics through multicomponent compounding strategy. J. Eur. Ceram. Soc. 2023, 43, 974–985. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, Y.; Zuo, Y.D.; Wang, H.S.; Liu, K.; Fan, B.Y.; Zhang, Q.F.; Zhang, G.Z.; Jiang, S.L.; Shen, M. Enhanced energy storage property achieved in Na0.5Bi0.5TiO3-based ferroelectric ceramics via composition design and grain size tuning. J. Eur. Ceram. Soc. 2022, 42, 6985–6996. [Google Scholar] [CrossRef]
- Shi, W.J.; Zhang, L.Y.; Jing, R.Y.; Hu, Q.Y.; Zeng, X.Y.; Alikin, D.O.; Shur, V.Y.; Wei, X.Y.; Gao, J.H.; Liu, G.; et al. Relaxor antiferroelectric-like characteristic boosting enhanced energy storage performance in eco-friendly (Bi0.5Na0.5)TiO3-based ceramics. J. Eur. Ceram. Soc. 2022, 42, 4528–4538. [Google Scholar] [CrossRef]
- Singh, A.; Kharangarh, P.; Gupta, V. Enhanced energy storage efficiency with superior thermal stability under low electric field and large electric field driven strain in environment- friendly Bi0.5Na0.5TiO3 based ferroelectric modified with LiNbO3. J. Alloys Compd. 2023, 945, 169181. [Google Scholar] [CrossRef]
- Yang, J.; Guan, P.F.; Zhang, Y.X.; Zhu, X.L.; Wang, H.T.; Yang, C.; Zheng, M. High energy storage density achieved in BNT-based ferroelectric translucent ceramics under low electric fields. J. Am. Ceram. Soc. 2024, 107, 6294–6306. [Google Scholar] [CrossRef]
- Shi, X.H.; Li, Z.P.; Shen, Z.Y.; Song, F.S.; Luo, W.Q.; Zeng, X.J.; Wang, Z.M.; Li, Y.M. Ba2+/Sr2+ regulation in A-site vacancy-engineered B0.015+1.5xS0.245-1.5x0.03BNT relaxor ceramics for energy storage. J. Am. Ceram. Soc. 2024, 107, 2325–2336. [Google Scholar] [CrossRef]
- Zhu, W.; Guo, H.H.; Shen, Z.Y.; Song, F.S.; Luo, W.Q.; Wang, Z.M.; Li, Y.M. Boosting dielectric temperature stability in BNBST-based energy storage ceramics by Nb2O5 modification. J. Am. Ceram. Soc. 2023, 106, 3633–3642. [Google Scholar] [CrossRef]
- Luo, W.X.; Wu, M.X.; Han, Y.F.; Zhou, X.; Liu, L.J.; He, Q.W.; Ren, P.R.; Yang, H.M.; Yang, H.; Wang, Q.; et al. Enhanced optical transmittance and energy-storage performance in NaNbO3-modified Bi0.5Na0.5TiO3 ceramics. J. Am. Ceram. Soc. 2023, 106, 4723–4731. [Google Scholar] [CrossRef]
- Jiang, Z.H.; Yuan, Y.; Yang, H.C.; Li, E.Z.; Zhang, S.R. Excellent thermal stability and energy storage properties of lead-free Bi0.5Na0.5TiO3-based ceramic. J. Am. Ceram. Soc. 2022, 105, 4027–4038. [Google Scholar] [CrossRef]
- Lian, H.L.; Liang, X.J.; Shi, M.; Liu, L.N.; Chen, X.M. Improved dielectric temperature stability and energy storage properties of BNT-BKT-based lead-free ceramics. Ceram. Int. 2024, 50, 5021–5031. [Google Scholar] [CrossRef]
- Wang, D.; Chu, B.K.; Li, P.; Han, W.F.; Kong, Y.X.; Fu, P.; Li, Y.C.; Hao, J.G.; Li, W. Improving the energy storage performance of (Bi0.5Na0.5)TiO3-BaTiO3 based ceramics via (Sr0.7Bi0.2)TiO3 modification. Ceram. Int. 2023, 49, 37486–37493. [Google Scholar] [CrossRef]
- Zheng, M.; Guan, P.F.; Yang, J.; Zhang, Y.X. Microstructure and composition driven ferroelectric properties of Er3+ doped lead-free multifunctional 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics. Ceram. Int. 2023, 49, 30481–30489. [Google Scholar] [CrossRef]
- Yang, Y.; Jing, R.; Wang, J.; Lu, X.; Du, H.; Jin, L. Large electrostrain and high energy-storage properties of (Sr1/3Nb2/3)4+-substituted (Bi0.51Na0.5)TiO3-0.07BaTiO3 lead-free ceramics. Ceram. Int. 2022, 48, 23975–23982. [Google Scholar] [CrossRef]
- Shang, K.L.; Shi, W.J.; Yang, Y.L.; Zhang, L.Y.; Hu, Q.Y.; Wei, X.Y.; Jin, L. Medium electric field-induced ultrahigh polarization response and boosted energy-storage characteristics in BNT-based relaxor ferroelectric polycrystalline ceramics. Ceram. Int. 2022, 48, 37223–37231. [Google Scholar] [CrossRef]
Composition | E (kV/cm) | Wrec (J/cm3) | η (%) | Ref. |
---|---|---|---|---|
(Ba0.3Sr0.7)0.5(Bi0.5Na0.5)0.5TiO3 + 14 wt% GS | 170 | 2.1 | 65.2 | [29] |
Ba0.105Na0.325Sr0.185Bi0.385TiO3 | 110 | 1.8 | ~73 | [30] |
0.45(Bi0.5Na0.5)TiO3-0.55(Sr0.7Bi0.2)TiO3-0.3(Bi0.2Na0.2Ba0.2Sr0.2Ca0.2)(Ti0.9Nb0.1)O3 | 410 | 6.04 | 85 | [31] |
Bi0.5N0.5TiO3-SrTiO3-0.04Sr2NaNb5O15 | 340 | 5.22 | 93.87 | [32] |
(65%(0.92Bi0.5Na0.5TiO3-0.08Bi(Mg0.3Zr0.6)O3)-35%(0.6BaTiO3-0.4NaNbO3) | 280 | 4.11 | 95.6 | [33] |
0.54Bi0.5Na0.5TiO3-0.06BaTiO3-0.4Bi0.2Sr0.7Ti0.96875Nb0.125O3 | 170 | 2.07 | 94.5 | [34] |
[(Bi0.5Na0.5)0.94Ba0.06]0.82La0.12TiO3 | 440 | 5.93 | 77.6 | [35] |
0.7Bi0.5Na0.5TiO3-0.2BaZr0.3Ti0.7O3-0.1NaNbO3 | 220 | 3.53 | 93.5 | [36] |
0.85(0.8525BNT–0.10995BKT–0.03755BT)0.15Sr(Mg1/3Nb2/3)O3 | 310 | 3.53 | 86.3 | [37] |
0.6Bi0.5Na0.5TiO3-0.4SrTiO3(@Si-TSS) | 270 | 3.14 | 86.21 | [38] |
0.9[0.88Ba0.6Ca0.4TiO3-0.12Bi(Mg2/3(Nb0.85Ta0.15)1/3)O3]-0.1Bi0.5Na0.5TiO3 | 430 | 3.59 | 90.86 | [39] |
0.7Na0.5Bi0.5TiO3-0.3NaNbO3/7 wt%CaZr0.5Ti0.5O3 | 410 | 4.93 | 93.3 | [40] |
0.92Bi0.5Na0.5TiO3–0.08LiNbO3 | 180 | 3.62 | 80.8 | [41] |
0.65Bi0.5Na0.4K0.1TiO3-0.35[2/3SrTiO3-1/3Bi(Mg2/3Nb1/3)O3] | 290 | 4.43 | 86 | [42] |
0.9Bi0.5Na0.5TiO3−0.1BaZr0.3Ti0.7O3:0.6mol%Er3+ | 190 | 2.95 | 51.3 | [43] |
Ba0.087Sr0.176Bi0.385Na0.325TiO3 | 130 | 2.33 | 64.5 | [44] |
(Bi0.5Na0.5)0.65(Ba0.3Sr0.7)0.35(Ti0.98Ce0.02)O3+2wt%Nb2O5 | 90 | 1.44 | 84.1 | [45] |
0.5Bi0.5Na0.5TiO3-0.5NaNbO3 | 286 | 5.14 | 79.65 | [46] |
0.75Bi0.5Na0.5TiO3-0.25CaTiO3 | 310 | 2.74 | 91 | [47] |
0.7[0.85(0.84Bi0.5Na0.5TiO3-0.16Bi0.5K0.5TiO3)-0.15BiMg2/3Nb1/3O3]-0.3Sr0.7La0.2TiO3 | 300 | 4.03 | 85.2 | [48] |
0.53(Bi0.5Na0.5)TiO3-0.07BaTiO3-0.4(Sr0.7Bi0.2)TiO3 | 260 | 3.26 | 90.3 | [49] |
0.94Bi0.5Na0.5TiO3-0.06BaTiO3:1mol%Er3+ | 80 | 0.429 | ~48 | [50] |
[0.93(Bi0.51Na0.5)0.07Ba)]Ti0.9925(Sr1/3Nb2/3)0.0075O3 | 100 | 1.36 | ~61 | [51] |
0.85(0.75Bi0.5Na0.4K0.1TiO3-0.25SrTiO3)-0.15Bi(Mg0.5Ti0.5)O3 | 270 | 4.82 | 84.9 | [52] |
0.85Bi0.5Na0.5TiO3-0.15LaFeO3 (buried sintering) | 310 | 4.923 | 77.4 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Jia, Y.; Yang, J.; Feng, Z.; Sun, S.; Zhu, X.; Wang, H.; Yan, S.; Zheng, M. Enhancing Energy Storage Performance of 0.85Bi0.5Na0.5TiO3-0.15LaFeO3 Lead-Free Ferroelectric Ceramics via Buried Sintering. Materials 2024, 17, 4019. https://doi.org/10.3390/ma17164019
Zhang Y, Jia Y, Yang J, Feng Z, Sun S, Zhu X, Wang H, Yan S, Zheng M. Enhancing Energy Storage Performance of 0.85Bi0.5Na0.5TiO3-0.15LaFeO3 Lead-Free Ferroelectric Ceramics via Buried Sintering. Materials. 2024; 17(16):4019. https://doi.org/10.3390/ma17164019
Chicago/Turabian StyleZhang, Yixiao, Yuchen Jia, Jian Yang, Zixuan Feng, Shuohan Sun, Xiaolong Zhu, Haotian Wang, Shiguang Yan, and Ming Zheng. 2024. "Enhancing Energy Storage Performance of 0.85Bi0.5Na0.5TiO3-0.15LaFeO3 Lead-Free Ferroelectric Ceramics via Buried Sintering" Materials 17, no. 16: 4019. https://doi.org/10.3390/ma17164019
APA StyleZhang, Y., Jia, Y., Yang, J., Feng, Z., Sun, S., Zhu, X., Wang, H., Yan, S., & Zheng, M. (2024). Enhancing Energy Storage Performance of 0.85Bi0.5Na0.5TiO3-0.15LaFeO3 Lead-Free Ferroelectric Ceramics via Buried Sintering. Materials, 17(16), 4019. https://doi.org/10.3390/ma17164019