Valley Spin–Polarization of MoS2 Monolayer Induced by Ferromagnetic Order in an Antiferromagnet
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khatei, J.; Ojha, B.; Samal, D. Valleytronics. Resonance 2023, 28, 537–546. [Google Scholar] [CrossRef]
- Schaibley, J.R.; Yu, H.; Clark, G.; Rivera, P.; Ross, J.S.; Seyler, K.L.; Yao, W.; Xu, X. Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1, 16055. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, Y.; Zhang, S.; He, J.; Yu, J.; Liu, Z. Valleytronics in transition metal dichalcogenides materials. Nano Res. 2019, 12, 2695–2711. [Google Scholar] [CrossRef]
- Thomas, N.; Mathew, S.; Nair, K.M.; O’Dowd, K.; Forouzandeh, P.; Goswami, A.; McGranaghan, G.; Pillai, S.C. 2D MoS2: Structure, mechanisms, and photocatalytic applications. Mater. Today Sustain. 2021, 13, 100073. [Google Scholar] [CrossRef]
- Wang, R.; Yu, Y.; Zhou, S.; Li, H.; Wong, H.; Luo, Z.; Gan, L.; Zhai, T. Strategies on Phase Control in Transition Metal Dichalcogenides. Adv. Funct. Mater. 2018, 28, 1802473. [Google Scholar] [CrossRef]
- Yang, C.-Y.; Chiu, K.-C.; Chang, S.-J.; Zhang, X.-Q.; Liang, J.-Y.; Chung, C.-S.; Pan, H.; Wu, J.-M.; Tseng, Y.-C.; Lee, Y.-H. Phase-driven magneto-electrical characteristics of single-layer MoS2. Nanoscale 2016, 8, 5627–5633. [Google Scholar] [CrossRef]
- Bussolotti, F.; Kawai, H.; Ooi, Z.E.; Chellappan, V.; Thian, D.; Pang, A.L.C.; Goh, K.E.J. Roadmap on finding chiral valleys: Screening 2D materials for valleytronics. Nano Futures 2018, 2, 032001. [Google Scholar] [CrossRef]
- Lu, Z.; Rhodes, D.; Li, Z.; Van Tuan, D.; Jiang, Y.; Ludwig, J.; Jiang, Z.; Lian, Z.; Shi, S.-F.; Hone, J.; et al. Magnetic field mixing and splitting of bright and dark excitons in monolayer MoSe2. 2D Mater. 2019, 7, 015017. [Google Scholar] [CrossRef]
- Mak, K.F.; He, K.; Shan, J.; Heinz, T.F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494–498. [Google Scholar] [CrossRef]
- Zhao, S.; Li, X.; Dong, B.; Wang, H.; Wang, H.; Zhang, Y.; Han, Z.; Zhang, H. Valley manipulation in monolayer transition metal dichalcogenides and their hybrid systems: Status and challenges. Rep. Prog. Phys. 2021, 84, 026401. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Cheng, Y.C.; Schwingenschlögl, U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 2011, 84, 153402. [Google Scholar] [CrossRef]
- Huang, L.; Krasnok, A.; Alu, A.; Yu, Y.; Neshev, D.; Miroshnichenko, A.E. Enhanced light-matter interaction in two-dimensional transition metal dichalcogenides. Rep. Prog. Phys. 2022, 85, 046401. [Google Scholar] [CrossRef]
- Zeng, H.; Cui, X. An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2629–2642. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Dai, J.; Yao, W.; Xiao, D.; Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493. [Google Scholar] [CrossRef] [PubMed]
- Kioseoglou, G.; Hanbicki, A.T.; Currie, M.; Friedman, A.L.; Gunlycke, D.; Jonker, B.T. Valley polarization and intervalley scattering in monolayer MoS2. Appl. Phys. Lett. 2012, 101, 221907. [Google Scholar] [CrossRef]
- Aivazian, G.; Gong, Z.; Jones, A.M.; Chu, R.-L.; Yan, J.; Mandrus, D.G.; Zhang, C.; Cobden, D.; Yao, W.; Xu, X. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys. 2015, 11, 148–152. [Google Scholar] [CrossRef]
- Stier, A.V.; McCreary, K.M.; Jonker, B.T.; Kono, J.; Crooker, S.A. Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla. Nat. Commun. 2016, 7, 10643. [Google Scholar] [CrossRef] [PubMed]
- Van der Donck, M.; Zarenia, M.; Peeters, F.M. Strong valley Zeeman effect of dark excitons in monolayer transition metal dichalcogenides in a tilted magnetic field. Phys. Rev. B 2018, 97, 081109. [Google Scholar] [CrossRef]
- Zhao, C.; Norden, T.; Zhang, P.; Zhao, P.; Cheng, Y.; Sun, F.; Parry, J.P.; Taheri, P.; Wang, J.; Yang, Y.; et al. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field. Nat. Nanotechnol. 2017, 12, 757–762. [Google Scholar] [CrossRef]
- Lyons, T.P.; Gillard, D.; Molina-Sánchez, A.; Misra, A.; Withers, F.; Keatley, P.S.; Kozikov, A.; Taniguchi, T.; Watanabe, K.; Novoselov, K.S.; et al. Interplay between spin proximity effect and charge-dependent exciton dynamics in MoSe2/CrBr3 van der Waals heterostructures. Nat. Commun. 2020, 11, 6021. [Google Scholar] [CrossRef]
- Seyler, K.L.; Zhong, D.; Huang, B.; Linpeng, X.; Wilson, N.P.; Taniguchi, T.; Watanabe, K.; Yao, W.; Xiao, D.; McGuire, M.A. Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. Nano Lett. 2018, 18, 3823–3828. [Google Scholar] [CrossRef] [PubMed]
- Chatterji, T.; McIntyre, G.J.; Lindgard, P.A. Antiferromagnetic phase transition and spin correlations in NiO. Phys. Rev. B 2009, 79, 172403. [Google Scholar] [CrossRef]
- Alders, D.; Tjeng, L.H.; Voogt, F.C.; Hibma, T.; Sawatzky, G.A.; Chen, C.T.; Vogel, J.; Sacchi, M.; Iacobucci, S. Temperature and thickness dependence of magnetic moments in NiO epitaxial films. Phys. Rev. B 1998, 57, 11623–11631. [Google Scholar] [CrossRef]
- Withanage, S.S.; Lopez, M.; Sameen, W.; Charles, V.; Khondaker, S.I. Elucidation of the growth mechanism of MoS2 during the CVD process. MRS Adv. 2019, 4, 581–586. [Google Scholar] [CrossRef]
- Li, T.; Guo, W.; Ma, L.; Li, W.; Yu, Z.; Han, Z.; Gao, S.; Liu, L.; Fan, D.; Wang, Z.; et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 2021, 16, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-J.; Luo, Y.-D.; Lin, Y.-H.; Nan, C.-W. Anisotropic ferromagnetic behaviors in highly orientated epitaxial NiO-based thin films. AIP Adv. 2015, 5, 077107. [Google Scholar] [CrossRef]
- Solovyev, I.V. Exchange interactions and magnetic force theorem. Phys. Rev. B 2021, 103, 104428. [Google Scholar] [CrossRef]
- Chakraborty, B.; Bera, A.; Muthu, D.V.S.; Bhowmick, S.; Waghmare, U.V.; Sood, A.K. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 2012, 85, 161403. [Google Scholar] [CrossRef]
- Wu, L.; Cong, C.; Shang, J.; Yang, W.; Chen, Y.; Zhou, J.; Ai, W.; Wang, Y.; Feng, S.; Zhang, H.; et al. Raman scattering investigation of twisted WS2/MoS2 heterostructures: Interlayer mechanical coupling versus charge transfer. Nano Res. 2021, 14, 2215–2223. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, Y.; Xu, C.; Cai, Y.Q.; Su, L.; Zhang, Y.; Zhang, Y.W.; Gundogdu, K.; Cao, L. Engineering Substrate Interactions for High Luminescence Efficiency of Transition-Metal Dichalcogenide Monolayers. Adv. Funct. Mater. 2016, 26, 4733–4739. [Google Scholar] [CrossRef]
- Sharma, M.; Singh, A.; Singh, R. Monolayer MoS2 Transferred on Arbitrary Substrates for Potential Use in Flexible Electronics. ACS Appl. Nano Mater. 2020, 3, 4445–4453. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, L.; Wang, Y.; Zou, M.; Zhang, Q.; Cao, A. Analysis of photoluminescence behavior of high-quality single-layer MoS2. Nano Res. 2019, 12, 1619–1624. [Google Scholar] [CrossRef]
- Pei, J.; Yang, J.; Xu, R.; Zeng, Y.H.; Myint, Y.W.; Zhang, S.; Zheng, J.C.; Qin, Q.; Wang, X.; Jiang, W. Exciton and trion dynamics in bilayer MoS2. Small 2015, 11, 6384–6390. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shinokita, K.; Watanabe, K.; Taniguchi, T.; Goto, M.; Kan, D.; Shimakawa, Y.; Moritomo, Y.; Nishihara, T.; Miyauchi, Y.; et al. Controllable Magnetic Proximity Effect and Charge Transfer in 2D Semiconductor and Double-Layered Perovskite Manganese Oxide van der Waals Heterostructure. Adv. Mater. 2020, 32, e2003501. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, C.-W.; Hsieh, C.-Y.; Chan, F.-M.; Huang, P.-J.; Yang, C.-Y. Valley Spin–Polarization of MoS2 Monolayer Induced by Ferromagnetic Order in an Antiferromagnet. Materials 2024, 17, 3933. https://doi.org/10.3390/ma17163933
Chan C-W, Hsieh C-Y, Chan F-M, Huang P-J, Yang C-Y. Valley Spin–Polarization of MoS2 Monolayer Induced by Ferromagnetic Order in an Antiferromagnet. Materials. 2024; 17(16):3933. https://doi.org/10.3390/ma17163933
Chicago/Turabian StyleChan, Chun-Wen, Chia-Yun Hsieh, Fang-Mei Chan, Pin-Jia Huang, and Chao-Yao Yang. 2024. "Valley Spin–Polarization of MoS2 Monolayer Induced by Ferromagnetic Order in an Antiferromagnet" Materials 17, no. 16: 3933. https://doi.org/10.3390/ma17163933
APA StyleChan, C.-W., Hsieh, C.-Y., Chan, F.-M., Huang, P.-J., & Yang, C.-Y. (2024). Valley Spin–Polarization of MoS2 Monolayer Induced by Ferromagnetic Order in an Antiferromagnet. Materials, 17(16), 3933. https://doi.org/10.3390/ma17163933