Molecular Dynamics Study on Wear Resistance of High Entropy Alloy Coatings Considering the Effect of Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Friction Simulation
2.2. Nanoindentation Simulation
3. Results
3.1. Force Displacement Curve
3.2. Effect of Temperature on Lattice Structure
3.3. Effect of Temperature on Lattice Structure
4. Discussion
4.1. Effect of Temperature on Morphology and Friction Coefficient
4.2. Effect of Temperature on Elastic Modulus and Hardness
5. Conclusions
- (1)
- In the friction process of the FeNiCrCoCu high entropy alloy coating, the value of the normal force decreases greatly due to thermal softening with the increase of temperature. The friction coefficients increased with the temperature, especially when the temperature reached 1200 K. This is because the high temperature leads to the increase in the proportion of disordered atoms in the material. At 300 K, 600 K, and 900 K, the ordered lattice structures of the high entropy alloy coating material are basically the same. At a temperature of 1200 K, the proportion of disordered lattice structures increases rapidly, resulting in a significant decrease in the normal force, which caused a significant decrease in the friction coefficient.
- (2)
- When the temperature was increased from 300 K to 600 K, the elastic modulus increased significantly. The density of dislocations at 600 K was significantly reduced compared with that at 300 K, resulting in the increase of the elastic modulus of the material from 173 GPa to 219 GPa. At temperatures of 900 K and 1200 K, the densities of dislocations increased rapidly, resulting in a significant decrease in the elastic modulus of the material. The hardnesses of the FeNiCrCoCu high entropy alloy coating were basically the same at 300 K and 600 K. Additionally, the hardness kept decreasing with increasing temperature, when the temperature reached 600 K. It was found that the degree of atomic disorder increased with temperature when the temperature reached 600 K, which lead to decreasing hardness.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qiu, Y.; Thomas, S.; Gibson, M.A.; Fraser, H.L.; Birbilis, N. Corrosion of high entropy alloys. NPJ Mat. Degrad. 2017, 1, 41529. [Google Scholar] [CrossRef]
- Fu, Z.; Jiang, L.; Wardini, J.L.; MacDonald, B.E.; Wen, H.; Xiong, W.; Zhang, D.; Zhou, Y.; Rupert, T.J.; Chen, W.; et al. A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength. Sci. Adv. 2018, 4, 8712. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.H.; Pan, Z.; Fu, Y.; Wang, X.; Wei, Y.; Luo, H.; Li, X. Corrosion-resistant high-entropy alloy coatings: A Review. J. Electrochem. Soc. 2021, 168, 1502. [Google Scholar] [CrossRef]
- Zhang, A.; Han, J.; Su, B.; Li, P.; Meng, J. Microstructure, mechanical properties and tribological performance of CoCrFeNi high entropy alloy matrix self-lubricating composite. Mater. Design 2017, 114, 253–263. [Google Scholar] [CrossRef]
- Du, L.; Lan, L.; Zhu, S.; Yang, H.J.; Shi, X.H.; Liaw, P.K.; Qiao, J. Effects of temperature on the tribological behavior of Al0.25CoCrFeNi high-entropy alloy. J. Mater. Sci. Technol. 2019, 35, 917–925. [Google Scholar] [CrossRef]
- Chuang, M.H.; Tsai, M.H.; Wang, W.R.; Lin, S.J.; Yeh, J.W. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 2011, 59, 6308–6317. [Google Scholar] [CrossRef]
- Zhang, J.; Li, W.; Qin, R.; Chen, P.; Liu, Y.; Liu, X.; Gao, L. An Atomic Insight into the Stoichiometry Effect on the Tribological Behaviors of CrCoNi Medium-Entropy Alloy. SSRN Electron. J. 2022, 593, 153391. [Google Scholar]
- Doan, D.Q.; Nguyen, V.H.; Tran, T.V.; Hoàng, M.T. Atomic-scale analysis of mechanical and wear characteristics of AlCoCrFeNi high entropy alloy coating on Ni substrate. J. Manuf. Process. 2023, 85, 1010–1023. [Google Scholar] [CrossRef]
- Ren, J.; Li, W.; Wang, Q.; Yang, R.; Gao, Q.; Li, J.; Xue, H.; Lu, X.; Tang, F. Atomistic simulation of tribology behaviors of Ti-based FeCoNiTi high entropy alloy coating during nanoscratching. SSRN Electron. J. 2023, 213, 112124. [Google Scholar] [CrossRef]
- Liu, K.; Komarasamy, M.; Gwalani, B.; Shukla, S.; Mishra, R.S. Fatigue behavior of ultrafine grained triplex Al0.3CoCrFeNi high entropy alloy. Scr. Mater. 2019, 158, 116–120. [Google Scholar] [CrossRef]
- Xiong, F.; Fu, R.D.; Li, Y.; Sang, D.L. Effects of nitrogen alloying and friction stir processing on the microstructures and mechanical properties of CoCrFeMnNi high-entropy alloys. J. Alloys Comp. 2020, 822, 153512. [Google Scholar] [CrossRef]
- Xin, S.; Shen, X.; Du, C.; Zhao, J.; Sun, B.R.; Xue, H.; Yang, T.; Cai, X.; Shen, T. Bulk nanocrystalline boron-doped VNbMoTaW high entropy alloys with ultrahigh strength, hardness, and resistivity. J. Alloys Comp. 2021, 853, 155995. [Google Scholar] [CrossRef]
- Chen, C.; Liu, N.; Zhang, J.; Cao, J.; Wang, L.J.; Xiang, H.F. Microstructure stability and oxidation behaviour of (FeCoNiMo)90(Al/Cr)10 high-entropy alloys. Mater. Sci. Technol. 2019, 35, 1883–1890. [Google Scholar] [CrossRef]
- Jin, G.; Cai, Z.; Guan, Y.; Cui, X.; Liu, Z.; Li, Y.; Dong, M.; Zhang, D. High temperature wear performance of laser-cladded FeNiCoAlCu high-entropy alloy coating. Appl. Surf. Sci. 2018, 445, 113–122. [Google Scholar] [CrossRef]
- Zhao, T.P.; Huai, L.L.; Jia, J.F.; Zhou, W.; Yang, Y.; Ren, X. Laser additive manufacturing of CrMnFeCoNi high entropy alloy: Microstructural evolution, high-temperature oxidation behavior and mechanism. Opt. Laser Technol. 2020, 130, 106326. [Google Scholar]
- Wang, X.; Guo, W.; Fu, Y. High-entropy alloys: Emerging materials for advanced functional applications. J. Mater. Chem. A 2021, 9, 663–701. [Google Scholar] [CrossRef]
- Ruestes, C.J.; Farkas, D. Dislocation emission and propagation under a nano-indenter in a model high entropy alloy. Comp. Mater. Sci. 2022, 205, 111218. [Google Scholar] [CrossRef]
- Qi, Y.; He, T.; Feng, M. The effect of Cu and Mn elements on the mechanical properties of single-crystal CoCrFeNi-based high-entropy alloy under nanoindentation. J. Appl. Phys. 2021, 129, 195104. [Google Scholar] [CrossRef]
- Laplanche, G.; Gadaud, P.; Bärsch, C.; Demtröder, K.; Reinhart, C.; Schreuer, J.; George, E.P. Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy. J. Alloys Comp. 2018, 746, 244–255. [Google Scholar] [CrossRef]
- Ma, Y.; Peng, G.; Wen, D.; Zhang, T. Nanoindentation creep behavior in a CoCrFeCuNi high-entropy alloy film with two different structure states. Mater. Sci. Eng. A 2015, 621, 111–117. [Google Scholar] [CrossRef]
- Verma, A.; Tarate, P.; Abhyankar, A.; Mohape, M.; Gowtam, D.; Deshmukh, V.; Shanmugasundaram, T. High temperature wear in CoCrFeNiCux high entropy alloys: The role of Cu. Scr. Mater. 2019, 161, 28–31. [Google Scholar] [CrossRef]
- Zhang, H.; Pan, Y.; He, Y.-Z. Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding. Mater. Des. 2011, 32, 1910–1915. [Google Scholar] [CrossRef]
- Jiao, W.; Li, T.; Chang, X.X.; Lu, Y.; Yin, G.; Cao, Z.; Li, T. A novel Co-free Al0.75CrFeNi eutectic high entropy alloy with superior mechanical properties. J. Alloys Comp. 2022, 902, 163814. [Google Scholar] [CrossRef]
- Seifi, M.; Li, D.; Yong, Z.; Liaw, P.K.; Lewandowski, J.J. Fracture toughness and fatigue crack growth behavior of as-cast high-entropy alloys. JOM 2015, 67, 2288–2295. [Google Scholar] [CrossRef]
- Braic, V.; Balaceanu, M.; Braic, M.; Vlădescu, A.; Panseri, S.; Russo, A. Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications. J. Mech. Behav. Biomed. 2012, 10, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dong, L.; Dong, X.; Zhao, W.; Liu, J.; Xiong, J.; Xu, C. Study on wear behavior of FeNiCrCoCu high entropy alloy coating on Cu substrate based on molecular dynamics. Appl. Surf. Sci. 2021, 570, 151236. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, J.; Sagar, S.; Dube, T.; Kim, B.G.; Jung, Y.G.; Koo, D.D.; Jones, A.; Zhang, J. Molecular dynamics modeling of mechanical and tribological properties of additively manufactured AlCoCrFe high entropy alloy coating on aluminum substrate. Mater. Chem. Phys. 2021, 263, 124341. [Google Scholar] [CrossRef]
- Bui, T.X.; Fang, T.H.; Lee, C.I. Deformation and machining mechanism of nanocrystalline NiCoCrFe high entropy alloys. J. Alloys Comp. 2022, 924, 166525. [Google Scholar] [CrossRef]
- Fang, Q.; Yi, M.; Li, J.; Liu, B.; Huang, Z. Deformation behaviors of Cu29Zr32Ti15Al5Ni19 high entropy bulk metallic glass during nanoindentation. Appl. Surf. Sci. 2018, 443, 122–130. [Google Scholar] [CrossRef]
- Zhu, P.; Fang, F. On the mechanism of material removal in nanometric cutting of metallic glass. Appl. Phys. A 2014, 116, 605–610. [Google Scholar] [CrossRef]
- Ruestes, C.J.; Bringa, E.M.; Gao, Y.; Urbassek, H.M. Molecular dynamics modeling of nanoindentation. In Applied Nanoindentation in Advanced Materials; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; pp. 313–345. [Google Scholar]
- Fang, T.H.; Weng, C.I.; Chang, J.G. Molecular dynamics analysis of temperature effects on nanoindentation measurement. Mater. Sci. Eng. A 2003, 357, 7–12. [Google Scholar] [CrossRef]
- Fang, T.H.; Wu, J.-H. Molecular dynamics simulations on nanoindentation mechanisms of multilayered films. Comp. Mater. Sci. 2008, 43, 785–790. [Google Scholar] [CrossRef]
- Shuang, S.; Lu, S.; Zhang, B.; Bao, C.; Kan, Q.; Kang, G.; Zhang, X. Effects of high entropy and twin boundary on the nanoindentation of CoCrNiFeMn high-entropy alloy: A molecular dynamics study. Comp. Mater. Sci. 2021, 195, 110495. [Google Scholar] [CrossRef]
- Tian, Y.; Fang, Q.; Li, J. Molecular dynamics simulations for nanoindentation response of nanotwinned FeNiCrCoCu high entropy alloy. Nanotechnology 2020, 31, 465701. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Hou, H.; Pan, Y.; Pei, X.; Song, Z.; Liaw, P.K.; Zhao, Y. Hardening-softening of Al0.3CoCrFeNi high-entropy alloy under nanoindentation. Mater. Des. 2023, 231, 112050. [Google Scholar] [CrossRef]
- Du, Y.; Li, Q. Molecular dynamics study on the dislocation evolution mechanism of temperature effect in nano indentation of FeCoCrCuNi high-entropy alloy. Mater. Technol. 2024, 39, 2299903. [Google Scholar] [CrossRef]
- Grippo, L.; Lucidi, S. A globally convergent version of the Polak-Ribière conjugate gradient method. Math. Program. 1997, 78, 375–391. [Google Scholar] [CrossRef]
- Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef]
- Martyna, G.J.; Tobias, D.J.; Klein, M.L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 1994, 101, 4177–4189. [Google Scholar] [CrossRef]
- Shinoda, W.; Shiga, M.; Mikami, M. Rapid estimation of elastic constants by molecular dynamics simulation under constant stress. Phys. Rev. B 2004, 69, 134103. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004, 19, 3–20. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhuang, Y.; Hu, A.; Kai, J.-J.; Liu, C.T. The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys. Scr. Mater. 2017, 130, 96–99. [Google Scholar] [CrossRef]
- Ding, Q.; Fu, X.; Chen, D.; Bei, H.; Gludovatz, B.; Li, J.; Zhang, Z.; George, E.P.; Yu, Q.; Zhu, T.J.; et al. Real-time nanoscale observation of deformation mechanisms in CrCoNi-based medium-to high-entropy alloys at cryogenic temperatures. Mater. Today 2019, 25, 21–27. [Google Scholar] [CrossRef]
- Coulomb, C.A. Théorie des machines simples, en ayant égard au frottement de leurs parties, et à la roideur des cordages; Bachelier: Paris, France, 1821. [Google Scholar]
- Popova, E.; Popov, V.L. The research works of Coulomb and Amontons and generalized laws of friction. Friction 2015, 3, 183–190. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Y. Microhardness, wear resistance, and corrosion resistance of AlxCrFeCoNiCu high-entropy alloy coatings on aluminum by laser cladding. Opt. Laser Technol. 2021, 134, 106632. [Google Scholar] [CrossRef]
- Tan, M.X. Calculation of hardness indentation depth relationship and elastic modulus using nanoindentation loading curve. J. Met. 2005, 10, 14–18. (In Chinese) [Google Scholar]
- Wu, Z.F.; Wang, X.D.; Cao, Q.P.; Zhao, G.H.; Li, J.X.; Zhang, D.X.; Zhu, J.J.; Jiang, J.Z. Microstructure characterization of AlxCo1Cr1Cu1Fe1Ni1 (x=0 and 2.5) high-entropy alloy films. J. Alloys Comp. 2014, 609, 137–142. [Google Scholar] [CrossRef]
- Luo, G.; Li, L.; Fang, Q.; Li, J.; Tian, Y.; Liu, Y.; Liu, B.; Peng, J.; Liaw, P.K. Microstructural evolution and mechanical properties of FeCoCrNiCu high entropy alloys: A microstructure-based constitutive model and a molecular dynamics simulation study. Appl. Math. Mechan. 2021, 42, 1109–1122. [Google Scholar] [CrossRef]
- Deng, X.; Chawla, N.; Chawla, K.K.; Koopman, M.C.; Chu, J.P. Mechanical Behavior of Multilayered Nanoscale Metal-Ceramic Composites. Adv. Eng. Mater. 2005, 7, 1099–1108. [Google Scholar] [CrossRef]
Temperature/K | h/Å | S | P/nN | v |
---|---|---|---|---|
300 | 29.6 | 12.14 | 61.66 | 0.32 |
600 | 29.7 | 17.38 | 119.03 | 0.32 |
900 | 29.8 | 16.05 | 120.46 | 0.32 |
1200 | 29.7 | 19.93 | 122.43 | 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Yang, Z.; Deng, Y. Molecular Dynamics Study on Wear Resistance of High Entropy Alloy Coatings Considering the Effect of Temperature. Materials 2024, 17, 3911. https://doi.org/10.3390/ma17163911
Zhang X, Yang Z, Deng Y. Molecular Dynamics Study on Wear Resistance of High Entropy Alloy Coatings Considering the Effect of Temperature. Materials. 2024; 17(16):3911. https://doi.org/10.3390/ma17163911
Chicago/Turabian StyleZhang, Xianhe, Zhenrong Yang, and Yong Deng. 2024. "Molecular Dynamics Study on Wear Resistance of High Entropy Alloy Coatings Considering the Effect of Temperature" Materials 17, no. 16: 3911. https://doi.org/10.3390/ma17163911
APA StyleZhang, X., Yang, Z., & Deng, Y. (2024). Molecular Dynamics Study on Wear Resistance of High Entropy Alloy Coatings Considering the Effect of Temperature. Materials, 17(16), 3911. https://doi.org/10.3390/ma17163911