Investigation on Anti-Fuel Erosion Performance of Sasobit/SBS-Modified Asphalt and Its Mixtures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Preparation of Sasobit/SBS-Modified Asphalt and Its Mixtures
2.3. Anti-Fuel Erosion Performance Tests of Asphalt
2.3.1. Fuel Immersion Test
2.3.2. Dynamic Shear Rheological (DSR) Test
2.4. Modification Mechanism Tests
2.4.1. Fourier Transform Infrared Spectrometer (FT-IR) Test
2.4.2. Fluorescence Microscope Test
2.5. Anti-Fuel Erosion Performance Tests of Asphalt Mixtures
2.5.1. Fuel Immersion Test
2.5.2. Cantabro Test
2.5.3. Marshall Stability (MS) Test
2.5.4. Splitting Tensile Strength Test
3. Results and Discussion
3.1. Influence of Sasobit on Anti-Fuel Erosion Performance of SBS-Modified Asphalt
3.1.1. Residual Mass Ratio
3.1.2. Rutting Factor
3.2. Anti-Fuel Erosion Mechanism of Sasobit
3.3. Effect of Fuel Immersion Time on the Mass Loss Ratio of SBS-Modified Asphalt Mixtures
3.4. Effect of Sasobit on Anti-Fuel Erosion Abilities of SBS-Modified Asphalt Mixtures
3.4.1. Mass Loss Ratio
3.4.2. Mechanical Properties
4. Conclusions
- The dissolution velocity of Sasobit/SBS-modified asphalt is 0.2%/min for diesel erosion, while it is 1.7%/min for gasoline erosion, lower than control sample without Sasobit. Diesel and gasoline erosion significantly reduce the rutting resistance ability of SBS-modified asphalt, while Sasobit weakens the damage caused by diesel and gasoline to the rutting resistance ability of SBS-modified asphalt. Therefore, Sasobit improves the anti-diesel ability of SBS-modified asphalt and significantly improves the anti-gasoline ability of SBS-modified asphalt.
- The major method for incorporating Sasobit into SBS-modified asphalt is physical blending. The continuous network crystal structure formed by Sasobit in SBS-modified asphalt effectively improves the anti-fuel ability of SBS-modified asphalt and its mixtures.
- According to the mass loss ratio after fuel immersion and the mass loss ratio after the Cantabro test of SBS-modified asphalt mixtures with different fuel immersion times, the mass loss ratio after the Cantabro test can more accurately reflect the influence of fuel erosion on asphalt mixtures.
- The mass loss ratio after the Cantabro test of Sasobit/SBS-modified asphalt mixtures is 1.2% for diesel erosion, while it is 6.8% for gasoline erosion, lower than control sample without Sasobit. Sasobit weakens the damage caused by diesel and gasoline to the high-temperature performance, moisture susceptibility and fracture properties of SBS-modified asphalt mixtures. Therefore, Sasobit significantly improves the anti-diesel and anti-gasoline performances of SBS-modified asphalt mixtures. It is reasonable and accurate to use the mass loss ratio after the Cantabro test as an index to evaluate the anti-fuel erosion abilities of asphalt mixtures.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, X.; Li, H.; Li, S.; Zhang, G. Long term effect of diesel leakage on asphalt pavements. Highway 2016, 61, 194–198. [Google Scholar]
- Tan, Z.; Li, H. Effect of Diesel fuel leakage on the performance of asphalt pavement. Sci. Technol. Eng. 2018, 18, 326–330. [Google Scholar]
- Li, H.; Li, S. Study on the mechanism of asphalt oil corrosion. Highw. Eng. 2016, 41, 229–231+237. [Google Scholar]
- Zhang, R.; Huang, X. Analysis of oil corrosion resistance of asphalt and asphalt mixtures. Highway 2006, 5, 4. [Google Scholar]
- Li, S.; Li, H. Research on oil erosion evaluation method of asphalt mixture based on oil erosion degree. J. Wuhan Univ. Technol. 2015, 37, 32–37. [Google Scholar]
- Cao, L.; Huang, T.; Li, L. Oil corrosion resistance of asphalt mixtures. Shanghai Highw. 2003, S1, 52–55. [Google Scholar]
- Chen, K.; Yuan, J.; Zhang, Y. Influence of oil erosion on high temperature performance of asphalt mixtures. Shanghai Highw. 2013, 1, 59–60. [Google Scholar]
- Cha, X.; Fu, G.; Xu, J. Influence of oil erosion on the water stability of TLA-modified asphalt mixtures. J. Chang. Univ. Technol. 2009, 6, 99–113. [Google Scholar]
- Li, Q.; Li, K.; Zhao, K.; Sun, G.; Luo, S. Fuel oil corrosion resistance of asphalt mixtures. Constr. Build. Mater. 2019, 220, 10–20. [Google Scholar] [CrossRef]
- Irfan, M.; Saeed, M.; Ahmed, S.; Ali, Y. Performance evaluation of Elvaloy as a fuel-resistant polymer in asphaltic concrete airfield pavements. J. Mater. Civ. Eng. 2017, 29, 04017163. [Google Scholar] [CrossRef]
- Li, S.; Li, H. Research on Oil erosion evaluation method of asphalt mixtures. J. Chongqing Jiaotong Univ. 2016, 35, 54. [Google Scholar]
- Du, X.; Liu, S.; Zhang, H.; Liu, W.; Lin, H. A test method to evaluate the fuel oil corrosion resistance of asphalt binders. Constr. Build. Mater. 2021, 292, 123416. [Google Scholar] [CrossRef]
- Gao, X.; Pang, L.; Xu, S.; Lv, Y.; Zou, Y. The effect of silicone resin on the fuel oil corrosion resistance of asphalt mixture. Sustainability 2022, 14, 14053. [Google Scholar] [CrossRef]
- Rastelli, S. Test Methods to Evaluate Fuel resistance of aprons asphalt pavements in Airports and Heliports. In Proceedings of the 2nd IAC–International Airports Conference, San Paolo, Brazil, 2–4 August 2006. [Google Scholar]
- Giuliani, F.; Merusi, F.; Filippi, S.; Biondi, D.; Finocchiaro, M.L.; Polacco, G. Effects of polymer modification on the fuel resistance of asphalt binders. Fuel 2009, 88, 1539–1546. [Google Scholar] [CrossRef]
- Merusi, F.; Polacco, G.; Nicoletti, A.; Giuliani, F. Kerosene resistance of asphalt binders modified with crumb rubber: Solubility and Rheological Aspects. Mater. Struct. 2010, 43, 1271–1281. [Google Scholar] [CrossRef]
- Li, P.; Li, X.; Nie, L. Research on the Effect of anti-oil modifier on the performance of asphalt mixtures. Constr. Technol. 2016, 45, 370–372. [Google Scholar]
- Merusi, F.; Giuliani, F.; Filippi, S.; Moggi, P.; Polacco, G. Kerosene-resistant asphalt binders based on nonconventional Modification. J. Transp. Eng. 2011, 137, 874–881. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Z.; You, Z. Compaction temperatures of Sasobit produced warm mix asphalt mixtures modified with SBS. Constr. Build. Mater. 2016, 123, 357–364. [Google Scholar] [CrossRef]
- Kok, B.V.; Yilmaz, M.; Akpolat, M. Evaluation of the conventional and rheological properties of SBS plus Sasobit modified binder. Constr. Build. Mater. 2014, 63, 174–179. [Google Scholar] [CrossRef]
- Ji, J.; Luo, X.; Xu, S. Structure and performance of Sasobit modified asphalt. China Highw. J. 2011, 24, 18–25. [Google Scholar]
- JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. China Communications Press: Beijing, China, 2011.
- JTG F40-2004; Technical Specification for Construction of Highway Asphalt Pavements, Research Institute of Highway. China Communications Press: Beijing, China, 2004.
- Hamzah, M.O.; Golchin, B.; Tye, C.T. Determination of the optimum binder content of warm mix asphalt incorporating rediset using response surface method. Constr. Build. Mater. 2013, 47, 1328–1336. [Google Scholar] [CrossRef]
- Yang, C.; Wu, S.; Xie, J.; Amirkhanian, S.; Zhao, Z.; Xu, H.; Wang, F.; Zhang, L. Development of blending model for RAP and virgin asphalt in recycled asphalt mixtures via a micron-Fe3O4 tracer. J. Clean Prod. 2023, 383, 135407. [Google Scholar] [CrossRef]
- Fazaeli, H.; Amini, A.A.; Moghadas Nejad, F.; Behbahani, H. Rheological properties of bitumen modified with a combination of Sasobit and other additives. J. Civ. Eng. Manag. 2016, 22, 135–145. [Google Scholar] [CrossRef]
- Tasdemir, Y. High temperature properties of wax modified binders and asphalt mixtures. Constr. Build. Mater. 2009, 23, 3220–3224. [Google Scholar] [CrossRef]
- Sengoz, B.; Topal, A.; Gorkem, C. Evaluation of natural zeolite as warm mix asphalt additive and its comparison with other warm mix additives. Constr. Build. Mater. 2013, 43, 242–252. [Google Scholar] [CrossRef]
- Cui, P.; Wu, S.; Xiao, Y.; Hu, R.; Yang, T. Environmental performance and functional analysis of chip seals with recycled basic oxygen furnace slag as aggregate. J. Hazard. Mater. 2021, 405, 124441. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wu, S.; Cui, P.; Amirkhanian, S.; Zhao, Z.; Wang, F.; Zhang, L.; Wei, M.; Zhou, X.; Xie, J. Performance characterization and enhancement mechanism of recycled asphalt mixtures involving high RAP content and steel slag. J. Clean Prod. 2022, 336, 130484. [Google Scholar] [CrossRef]
- Li, J.; Yu, J.; Wu, S.; Xie, J. The mechanical resistance of asphalt mixture with steel slag to deformation and skid degradation based on laboratory accelerated heavy loading test. Materials 2022, 15, 911. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Wu, S.; Li, N.; Cui, P.; Wang, H.; Amirkhanian, S.; Zhao, Z. Performance and VOCs emission inhibition of environmentally friendly rubber modified asphalt with UiO-66 MOFs. J. Clean Prod. 2023, 385, 135633. [Google Scholar] [CrossRef]
- Gong, X.; Liu, Q.; Wan, P.; Chen, S.; Wang, H.; Wu, J.; Wu, S. A comparative study of the properties CO2-based polyurethane modified asphalts prepared by prepolymer and in-situ polymerization methods. Constr. Build. Mater. 2023, 364, 129958. [Google Scholar] [CrossRef]
- Rastelli, S. Experimental evaluation of fuel damage in bituminous materials. In Proceedings of the 88th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 11–15 January 2009. [Google Scholar]
- Polacco, G.; Filippi, S.; Paci, M.; Giuliani, F.; Merusi, F. Structural and rheological characterization of wax modified bitumens. Fuel 2012, 95, 407–416. [Google Scholar] [CrossRef]
Properties | Standard Value | Measured Value | Test Methods |
---|---|---|---|
Penetration (25 °C, 0.1 mm) | 40–60 | 56.7 | T0604-2011 |
Viscosity (135 °C, Pa·s) | ≥0.35 | 1.13 | T0625-2011 |
Softening point (°C) | ≥60 | 76.1 | T0606-2011 |
Ductility (5 °C, cm) | ≥20 | 59.0 | T0605-2011 |
Density (g/cm3) | - | 1.04 | T0603-2011 |
Properties | Melting Point (°C) | Flash Point (°C) | Viscosity (135 °C, Pa·s) | Penetration (25 °C, 0.1 mm) |
---|---|---|---|---|
Measured value | 100 | 290 | 5.47 * 10−3 | 1 |
Properties | Measured Value | Test Methods |
---|---|---|
Penetration (25 °C, 0.1 mm) | 38.1 | T0604-2011 |
Softening point (°C) | 89.3 | T0606-2011 |
Ductility (5 °C, cm) | 40.0 | T0605-2011 |
Viscosity (135 °C, Pa·s) | 0.99 | T0625-2011 |
Asphalt | Optimal Asphalt Content (%) | Mixing Temperature (°C) | Compaction Temperature (°C) | Relative Density of Bulk Volume | Maximum Theoretical Relative Density | Air Void Content (%) |
---|---|---|---|---|---|---|
SBS-modified asphalt | 4.5 | 180 | 170 | 2.628 | 2.744 | 4.23 |
Sasobit/SBS-modified asphalt | 4.5 | 160 | 150 | 2.626 | 2.741 | 4.20 |
Description of Sample | Asphalt | Fuel Type | Fuel Immersion Time (min) |
---|---|---|---|
S-N | SBS-modified asphalt | - | - |
S-D120 | SBS-modified asphalt | diesel | 120 |
S-G10 | SBS-modified asphalt | gasoline | 10 |
SS-N | Sasobit/SBS-modified asphalt | - | - |
SS-D120 | Sasobit/SBS-modified asphalt | diesel | 120 |
SS-G10 | Sasobit/SBS-modified asphalt | gasoline | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Chen, M.; Jiang, Q.; Zhang, J.; Fan, Y.; He, J. Investigation on Anti-Fuel Erosion Performance of Sasobit/SBS-Modified Asphalt and Its Mixtures. Materials 2024, 17, 3016. https://doi.org/10.3390/ma17123016
Wu Y, Chen M, Jiang Q, Zhang J, Fan Y, He J. Investigation on Anti-Fuel Erosion Performance of Sasobit/SBS-Modified Asphalt and Its Mixtures. Materials. 2024; 17(12):3016. https://doi.org/10.3390/ma17123016
Chicago/Turabian StyleWu, Yongkang, Meizhu Chen, Qi Jiang, Jianwei Zhang, Yansong Fan, and Jun He. 2024. "Investigation on Anti-Fuel Erosion Performance of Sasobit/SBS-Modified Asphalt and Its Mixtures" Materials 17, no. 12: 3016. https://doi.org/10.3390/ma17123016
APA StyleWu, Y., Chen, M., Jiang, Q., Zhang, J., Fan, Y., & He, J. (2024). Investigation on Anti-Fuel Erosion Performance of Sasobit/SBS-Modified Asphalt and Its Mixtures. Materials, 17(12), 3016. https://doi.org/10.3390/ma17123016