Fracture Behavior and Mechanism of Nb-Si-Based Alloys with Heterogeneous Layered Structure
Abstract
1. Introduction
2. Experimental Procedures
2.1. Materials Preparation
2.2. Microstructural Observation
2.3. Mechanical Property Tests
3. Results and Discussion
3.1. Microstructure Evolution of Ball-Milled Powders
3.2. Microstructural Characterization of Heterogeneous Nb-16Si Alloys
3.3. Room-Temperature Fracture Behavior of Heterogeneous Nb-16Si Alloys
3.4. High-Temperature Fracture Behavior of Heterogeneous Nb-16Si Alloys
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pollock, T.M. Alloy design for aircraft engines. Nat. Mater. 2016, 15, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Bewlay, B.P.; Lewandowksi, J.J.; Jackson, M.R. Refractory metal-intermetallic in-situ composites for aircraft engines. JOM 1997, 49, 44–45. [Google Scholar] [CrossRef]
- Pollock, T.M.; Argon, A.S. Creep resistance of CMSX-3 nickel base superalloy single crystals. Acta Metall. Mater. 1992, 40, 1–30. [Google Scholar] [CrossRef]
- Jin, Z.H.; Jia, L.N.; Ye, C.T.; Wang, W.B.; Zhang, H. Anisotropy of mechanical properties in directionally solidified Nb-Si alloys at room temperature compression. J. Alloys Compd. 2023, 934, 167937. [Google Scholar] [CrossRef]
- Sha, J.; Hirai, H.; Ueno, H.; Tabaru, T.; Kitahara, A.; Hanada, S. Mechanical properties of as-cast and directionally solidified Nb-Mo-W-Ti-Si in-situ composites at high temperatures. Metall. Mater. Trans. A 2003, 34, 85–94. [Google Scholar] [CrossRef]
- Liu, W.; Huang, S.; Ye, C.; Jia, L.; Kang, Y.; Sha, J.; Chen, B.; Wu, Y.; Xiong, H. Progress in Nb-Si ultra-high temperature structural materials: A review. J. Mater. Sci. Technol. 2022, 149, 127–153. [Google Scholar] [CrossRef]
- Li, Y.; Ma, C.; Zhang, H.; Miura, S. Mechanical properties of directionally solidified Nb-Mo-Si-based alloys with aligned Nbss/Nb5Si3 lamellar structure. Mater. Sci. Eng. A 2011, 528, 5772–5777. [Google Scholar] [CrossRef]
- Liu, W.; Sha, J.B. Failure mode transition of Nb phase from cleavage to dimple/tear in Nb-16Si based alloys prepared via spark plasma sintering. Mater. Des. 2016, 111, 301–311. [Google Scholar] [CrossRef]
- Su, L.; Jia, L.; Jiang, K.; Zhang, H. The oxidation behavior of high Cr and Al containing Nb-Si-Ti-Hf-Al-Cr alloys at 1200 and 1250 °C. Int. J. Refract. Met. Hard Mater. 2017, 69, 131–137. [Google Scholar] [CrossRef]
- Sekido, N.; Kimura, Y.; Miura, S.; Wei, F.G.; Mishima, Y. Fracture toughness and high temperature strength of unidirectionally solidified Nb-Si binary and Nb-Ti-Si ternary alloys. J. Alloys Compd. 2006, 425, 223–229. [Google Scholar] [CrossRef]
- Yan, Y.; Ding, H.; Kang, Y.; Song, J. Microstructure evolution and mechanical properties of Nb-Si based alloy processed by electromagnetic cold crucible directional solidification. Mater. Des. 2014, 55, 450–455. [Google Scholar] [CrossRef]
- Li, Z.; Peng, L.M. Microstructural and mechanical characterization of Nb-based in situ composites from Nb–Si–Ti ternary system. Acta Mater. 2007, 55, 6573–6585. [Google Scholar] [CrossRef]
- Tian, Y.X.; Guo, J.T.; Zhou, L.Z.; Cheng, G.M.; Ye, H.Q. Microstructure and room temperature fracture toughness of cast Nbss/silicides composites alloyed with Hf. Mater. Lett. 2008, 62, 2657–2660. [Google Scholar] [CrossRef]
- Kim, W.-Y.; Tanaka, H.; Kasama, A.; Hanada, S. Microstructure and room temperature fracture toughness of Nbss/Nb5Si3 in situ composites. Intermetallics 2001, 9, 827–834. [Google Scholar] [CrossRef]
- Ma, E.; Shin, S.-H.; Choi, W.; Byun, J.; Hwang, B. Machine learning approach for predicting the fracture toughness of Nb Si based alloys. Int. J. Refract. Met. H 2023, 117, 106420. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Wang, Q.; Chen, R.; Su, Y.; Fu, H. Strength-ductility synergy of element Ru for Nb–Si based in-situ composites. Mater. Sci. Eng. A 2023, 887, 145770. [Google Scholar] [CrossRef]
- Mendiratta, M.G.; Dimiduk, D.M. Strength and toughness of a Nb/Nb5Si3 composite. Metall. Trans. A 1993, 24, 501–504. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhou, H.; Lu, Q.; Gao, H.; Lu, L. Extra strengthening and work hardening in gradient nanotwinned metals. Science 2018, 362, 559. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Ameyama, K.; Anderson, P.M.; Beyerlein, I.J.; Gao, H.; Kim, H.S.; Lavernia, E.; Mathaudhu, S.; Mughrabi, H.; Ritchie, R.O.; et al. Heterostructured materials: Superior properties from hetero-zone interaction. Mater. Res. Lett. 2021, 9, 1–31. [Google Scholar] [CrossRef]
- Haftlang, F.; Asghari-Rad, P.; Moon, J.; Zargaran, A.; Lee, K.A.; Hong, S.J.; Kim, H.S. Simultaneous effects of deformation-induced plasticity and precipitation hardening in metastable non-equiatomic FeNiCoMnTiSi ferrous medium-entropy alloy at room and liquid nitrogen temperatures. Scr. Mater. 2021, 202, 114013. [Google Scholar] [CrossRef]
- Wei, R.; Gao, Q.; Zhang, X.; Zhang, K.; Wang, L.; Han, Z.; Chen, L.; Wang, T.; Guo, C.; Li, F.; et al. Heterogeneous-structure-induced ultrahigh strength and ductility in a metastable dual-phase Fe60Cr15Ni16Al9 medium entropy alloy. Mater. Sci. Eng. A 2023, 867, 144710. [Google Scholar] [CrossRef]
- Clegg, W.J.; Kendall, K.; Alford, N.M.; Button, T.W.; Birchall, J.D. A simple way to make tough ceramics. Nature 1990, 347, 455–457. [Google Scholar] [CrossRef]
- Rowe, R.G.; Skelly, D.W.; Larsen, M.; Heathcote, J.; Odette, G.R.; Lucas, G.E. Microlaminated high temperature intermetallic composites. Scr. Metall. Mater. 1994, 31, 1487–1492. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, Y. Heterogeneous materials: A new class of materials with unprecedented mechanical properties. Mater. Res. Lett. 2017, 5, 527–532. [Google Scholar] [CrossRef]
- Pippan, R.; Flechsig, K.; Riemelmoser, F.O. Fatigue crack propagation behavior in the vicinity of an interface between materials with different yield stresses. Mater. Sci. Eng. A 2000, 283, 225–233. [Google Scholar] [CrossRef]
- Han, F.; Jiang, Y.; Cao, F.; Han, L.; Zhu, J.; Wang, W.; Liang, S. Enhanced strength, ductility and electrical conductivity of CuCrZr alloys by tailoring a heterogeneous layered microstructure. Mater. Sci. Eng. A 2023, 863, 144502. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, B.; You, C.; Zhang, W.; Li, Y.; Zhang, Y. Strengthening and toughening mechanisms of titanium-nitrogen alloy with a laminated structure fabricated by spark plasma sintering. Mater. Sci. Eng. A 2020, 769, 138492. [Google Scholar] [CrossRef]
- Yu, C.X.; Zhao, X.J.; Xiao, L.R.; Cai, Z.Y.; Zhang, B.; Guo, L. Microstructure and mechanical properties of in-situ laminated Nb/Nb5Si3 composites. Mater. Lett. 2017, 209, 606–608. [Google Scholar] [CrossRef]
- Schlesinger, M.E.; Okamoto, H.; Gokhale, A.B.; Abbaschian, R. The Nb-Si (Niobium-Silicon) system. J. Phase Equilib. 1993, 14, 502–509. [Google Scholar] [CrossRef]
- Wan, H.; Leung, N.; Jargalsaikhan, U.; Ho, E.; Wang, C.; Liu, Q.; Peng, H.X.; Su, B.; Sui, T. Fabrication and characterisation of alumina/aluminium composite materials with a nacre-like micro-layered architecture. Mater. Des. 2022, 223, 111190. [Google Scholar] [CrossRef]
- Wang, X.; Wang, G.; Zhang, K. Effect of mechanical alloying on microstructure and mechanical properties of hot-pressed Nb–16Si alloys. Mater. Sci. Eng. A 2010, 527, 3253–3258. [Google Scholar] [CrossRef]
- Liu, J.; Lin, L.; Li, J.; Liu, J.; Yuan, Y.; Ivanov, M.; Chen, M.; Liu, B.; Ge, L.; Xie, T.; et al. Effects of ball milling time on microstructure evolution and optical transparency of Nd: YAG ceramics. Ceram. Int. 2014, 40, 9841–9851. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhang, K.F. Mechanical alloying, microstructure and properties of Nb–16Si alloy. J. Alloys Compd. 2010, 490, 677–683. [Google Scholar] [CrossRef]
- Liu, W.; Sha, J. Effect of Nb and Nb5Si3 powder size on microstructure and fracture behavior of an Nb-16Si alloy fabricated by spark plasma sintering. Metall. Mater. Trans. A. 2014, 45, 4316–4323. [Google Scholar] [CrossRef]
- Yavas, D.; Bastawros, A.F. Correlating interfacial fracture toughness to surface roughness in polymer-based interfaces. J. Mater. Res. 2021, 36, 2779–2791. [Google Scholar] [CrossRef]
- Chan, K.S. Alloying effects on fracture mechanisms in Nb-based intermetallic in-situ composites. Mater. Sci. Eng. A. 2002, 329, 513–522. [Google Scholar] [CrossRef]
- Lu, S.; Laborda, A.; Cook, R.; Zhang, Y.; Verbickas, R.; Reed, P. A numerical study of crack shielding/anti-shielding in layered architectures. Int. J. Fatigue 2019, 124, 503–519. [Google Scholar] [CrossRef]
- Simha, N.K.; Fischer, F.D.; Kolednik, O.; Predan, J.; Shan, G.X. Crack tip shielding or anti-shielding due to smooth and discontinuous material inhomogeneities. Int. J. Fract. 2005, 135, 73–93. [Google Scholar] [CrossRef]
- Brescakovic, D.; Kolednik, O. Fracture toughness improvement due to crack deflection and crack trapping by elliptical voids or particles. Int. J. Solids Struct. 2023, 285, 112551. [Google Scholar] [CrossRef]
- Zhou, R.; Li, Z.; Sun, J. Crack deflection and interface debonding in composite materials elucidated by the configuration force theory. Compos. Pt. B-Eng. 2011, 42, 1999–2003. [Google Scholar] [CrossRef]
- Li, H.; Gao, S.; Tomota, Y.; Ii, S.; Tsuji, N.; Ohmura, T. Mechanical response of dislocation interaction with grain boundary in ultrafine-grained interstitial-free steel. Acta Mater. 2021, 206, 116621. [Google Scholar] [CrossRef]
- Ma, C.; Kasama, A.; Tanaka, R.; Hanada, S.; Kang, M. Development of Nb/ Nb-Silicide in-situ Composites. Trans. Mater. Heat Treat. 2000, 21, 83–88. [Google Scholar]
- Li, Z.B.; Zhang, G.H.; Chou, K.C. Simultaneous enhancements of strength and hardness for fine-grained W-NiFeCoCrMn composites. Mater. Charact. 2023, 201, 112933. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wang, X.; Wang, Z.; Sun, Z.; Ye, W.; Zhao, Q. Fracture Behavior and Mechanism of Nb-Si-Based Alloys with Heterogeneous Layered Structure. Materials 2024, 17, 2735. https://doi.org/10.3390/ma17112735
Wang S, Wang X, Wang Z, Sun Z, Ye W, Zhao Q. Fracture Behavior and Mechanism of Nb-Si-Based Alloys with Heterogeneous Layered Structure. Materials. 2024; 17(11):2735. https://doi.org/10.3390/ma17112735
Chicago/Turabian StyleWang, Sheng, Xiaoli Wang, Zhiming Wang, Zhiping Sun, Weicheng Ye, and Qihu Zhao. 2024. "Fracture Behavior and Mechanism of Nb-Si-Based Alloys with Heterogeneous Layered Structure" Materials 17, no. 11: 2735. https://doi.org/10.3390/ma17112735
APA StyleWang, S., Wang, X., Wang, Z., Sun, Z., Ye, W., & Zhao, Q. (2024). Fracture Behavior and Mechanism of Nb-Si-Based Alloys with Heterogeneous Layered Structure. Materials, 17(11), 2735. https://doi.org/10.3390/ma17112735