Phase Composition of HiVac-VPE Lithium Niobate Optical Waveguides Identified by Spectroscopic Investigations
Abstract
1. Introduction
2. Samples Fabrication and Index Profiles Reconstruction
3. Results and Discussion
3.1. Raman Spectroscopy
3.2. IR Reflection Spectroscopy
3.3. IR Absorption Spectroscopy
3.4. UV-VIS Absorption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rambu, A.P.; Apetrei, A.M.; Doutre, F.; Tronche, H.; Tiron, V.; De Micheli, M.; Tascu, S. Lithium niobate waveguides with high-index contrast and preserved nonlinearity fabricated by high vacuum vapor-phase proton exchange. Photonics Res. 2020, 8, 8–16. [Google Scholar] [CrossRef]
- Rambu, A.P.; Apetrei, A.M.; Tascu, S. Role of the high vacuum in the precise control of index contrasts and index profiles of LiNbO3 waveguides fabricated by high vacuum proton exchange. Opt. Laser Technol. 2019, 118, 109–114. [Google Scholar] [CrossRef]
- Rambu, A.P.; Apetrei, A.M.; Doutre, F.; Tronche, H.; De Micheli, M.; Tascu, S. Analysis of High-Index Contrast Lithium Niobate Waveguides Fabricated by High Vacuum Proton Exchange. J. Light. Technol. 2018, 36, 2675–2684. [Google Scholar] [CrossRef]
- Lenzini, F.; Kasture, S.; Haylock, B.; Lobino, M. Anisotropic model for the fabrication of annealed and reverse proton exchanged waveguides in congruent lithium niobate. Opt. Express 2015, 23, 1748–1756. [Google Scholar] [CrossRef] [PubMed]
- Nikolopoulos, J.; Yip, G.L. Theoretical modeling and characterization of annealed proton-exchanged planar waveguides in z-cut LiNbO3. J. Light. Technol. 1991, 9, 864–870. [Google Scholar] [CrossRef]
- Passaro, A.; Franco, M.A.R.; Abe, N.M.; Sircilli, F. The effect of the proton-concentration-to-refractive-index models on the propagation properties of APE waveguides. J. Light. Technol. 2002, 20, 1573–1577. [Google Scholar] [CrossRef]
- De Almeida, J.M.M. Design methodology of annealed H+ waveguides in ferroelectric LiNbO3. Opt. Eng. 2007, 46, 064601. [Google Scholar] [CrossRef]
- Vohra, S.T.; Mickelson, A.R.; Asher, S.E. Diffusion characteristics and waveguiding properties of proton-exchanged and annealed LiNbO3 channel waveguides. J. Appl. Phys. 1989, 66, 5161–5174. [Google Scholar] [CrossRef]
- Kostritskii, S.M.; Korkishko, Y.N.; Fedorov, V.A.; Sevostyanov, O.G.; Chirkova, I.M. Raman Spectra and Electro-Optic Properties of Proton-Exchanged Channel Waveguides in Lithium Niobate Crystals; SibRaman Seminar IAE: Novosibirsk, Russia, 2015. [Google Scholar]
- Kuneva, M.; Tonchev, S.; Gorgorov, R. Approaches in Characterization of Li1−xHxNbO3 Optical Waveguide Layers. In Advances in Microelectronics: Reviews; International Frequency Sensor Association Publishing: Barcelona, Spain, 2019; pp. 183–220. [Google Scholar]
- Kuneva, M.; Tonchev, S. Spectroscopy of optical waveguiding layers. Bulg. Chem. Commun. 2011, 43, 276–287. [Google Scholar]
- Savatinova, I.; Tonchev, S.; Liarokapis, E.; Armenise, M.N.; Armenise, M. Evidence of different β-phases in highly protonated z-cut H:LiNbO3 waveguides by Raman scattering. Appl. Phys. A 1999, 68, 483–487. [Google Scholar] [CrossRef]
- Savova, I.; Savatinova, I.; Liarokapis, E. Phase composition of Z-cut protonated LiNbO3: A Raman study. Opt. Mater. 2001, 16, 353–360. [Google Scholar] [CrossRef]
- Savova, I.; Savatinova, I.; Kircheva, P.; Liarokapis, E. Raman characterization of H:LiNbO3 waveguides. Appl. Phys. B 2001, 73, 565–568. [Google Scholar] [CrossRef]
- Kostritskii, S.M.; Korkishko, Y.N.; Fedorov, V.A.; Mitrokhin, V.P.; Sevostyanov, O.G.; Chirkova, I.M.; De Micheli, M.; Stepanenko, O. Subsurface disorder and electro-optical properties of proton-exchanged LiNbO3 waveguides produced by different techniques. J. Eur. Opt. Soc. 2014, 9, 14055. [Google Scholar] [CrossRef]
- Kostritskii, S.M.; Rodnov, S.V.; Korkishko, Y.N.; Fedorov, V.A.; Sevostyanov, O.G. Electro-optical properties of different HxLi1-xNbO3 phases in proton-exchanged LiNbO3 waveguides. Ferroelectrics 2012, 440, 47–56. [Google Scholar] [CrossRef]
- Paz-Pujalt, G.R.; Tuschel, D.D.; Braunstein, G.; Blanton, T.; Tong Lee, S.; Salter, L.M. Characterization of proton exchange lithium niobate waveguides. J. Appl. Phys. 1994, 76, 3981–3987. [Google Scholar] [CrossRef]
- Fu, Y.-L.; Wu, Y.-C.; Yuan, Y.F.; Chen, B.X. Raman spectra of proton-exchanged LiNbO3 optical waveguides. Chin. Phys. Lett. 2004, 21, 1292–1293. [Google Scholar]
- Korkishko, Y.N.; Fedorov, V.A.; Kostritskii, S.M. Optical and X-ray characterization of HxLi1−xNbO3 phases in proton-exchanged LiNbO3 optical waveguides. J. Appl. Phys. 1998, 84, 2411–2419. [Google Scholar] [CrossRef]
- Korkishko, Y.N.; Fedorov, V.A. Relationship between refractive indices and hydrogen concentration in proton exchanged LiNbO3 waveguides. J. Appl. Phys. 1997, 82, 1010–1017. [Google Scholar] [CrossRef]
- Kuneva, M. Surface phase detection of proton-exchanged layers in LiNbO3 and LiTaO3 by IR reflection spectroscopy. Bulg. Chem. Commun. 2013, 45, 474–478. [Google Scholar]
- Rong, S.; Wen, X.; Ding, N.; Liao, J.; Hua, P. X-Cut Lithium Niobate Optical Waveguide with High-Index Contrast and Low Loss Fabricated by Vapor Proton Exchange. Photonics 2023, 10, 1390. [Google Scholar] [CrossRef]
- Yasemin Aşık, F.; Gökkavas, M.; Öztekin, E.; Karagöz, E.; Ceylan, A.; Özbay, E. Optimization of the annealed proton exchange method with controlled annealing for multifunctional integrated optical chip production. Appl. Opt. 2022, 61, 8898–8903. [Google Scholar] [CrossRef] [PubMed]
- Kuneva, M.; Tonchev, S.; Christova, K. Phase Composition and Stress in Proton Exchanged Waveguide Layers in LiNbO3 and LiTaO3. In Newest Updates in Physical Science Research; BP International: New York, NY, USA, 2021; pp. 140–151. [Google Scholar]
- Stepanenko, O.; Quillier, E.; Tronche, H.; Baldi, P.; De Micheli, M. Crystallographic and Optical Properties of Z-Cut High Index Soft Proton Exchange (HISoPE) LiNbO3 Waveguides. J. Light. Technol. 2016, 34, 2206–2212. [Google Scholar] [CrossRef]
- Bazzan, M.; Sada, C. Optical waveguides in lithium niobate: Recent developments and applications. Appl. Phys. Rev. 2015, 2, 040603. [Google Scholar] [CrossRef]
- Stepanenko, O.; Quillier, E.; Tronche, H.; Baldi, P.; De Micheli, M. Highly confining proton exchanged waveguides on Z-cut LiNbO3 with preserved nonlinear coefficient. IEEE Photon. Technol. Lett. 2014, 26, 1557–1560. [Google Scholar] [CrossRef]
- Surovtsev, N.V.; Pugachev, A.M.; Malinovsky, V.K.; Shebanin, A.P.; Kojima, S. Low-frequency Raman spectra in LiNbO3: Within and beyond the standard paradigm of ferroelectric dynamics. Phys. Rev. B 2005, 72, 104303. [Google Scholar] [CrossRef]
- Kalampounias, A. Low-frequency Raman scattering in alkali tellurite glasses. Bull. Mater. Sci. 2008, 31, 781–785. [Google Scholar] [CrossRef]
- Anikiev, A.A.; Umarov, M.F.; Scott, J.F. Processing and characterization of improved congruent lithium niobate. AIP Adv. 2018, 8, 115016. [Google Scholar] [CrossRef]
- Passaro, V.M.N.; Armenise, M.N.; Nesheva, D.; Savatinova, I.T.; Pun, E.Y.B. LiNbO3 Optical Waveguides Formed in a New Proton Source. J. Light. Technol. 2002, 20, 71–77. [Google Scholar] [CrossRef]
- Korkishko, Y.N.; Fedorov, V.A.; Baranov, E.A.; Proyaeva, M.V.; Morozova, T.V.; Caccavale, F.; Segato, F.; Sada, C.; Kostritskii, S.M. Characterization of α-phase soft proton-exchanged LiNbO3 optical waveguides. J. Opt. Soc. Am. A 2001, 18, 1186–1191. [Google Scholar] [CrossRef] [PubMed]
- Kostritskii, S.M.; Korkishko, Y.N.; Fedorov, V.A.; Proyaeva, M.V.; Baranov, E.A. Spontaneous polarization and nonlinear susceptibility in various protonated HxLi1−xNbO3 phases. Tech. Phys. 2002, 47, 74–79. [Google Scholar] [CrossRef]
- Bates, J.B.; Wang, J.C.; Perkins, R.A. Mechanisms for hydrogen diffusion in TiO2. Phys. Rev. B 1979, 19, 4130–4137. [Google Scholar] [CrossRef]
- Ahlfeldt, H.; Webjorn, J.; Thomas, P.A.; Teat, S.J. Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3. J. Appl. Phys. 1995, 77, 4467–4476. [Google Scholar] [CrossRef]
- Fridkin, V.M.; Kochev, K.D.; Kusminov, Y.S.; Verkhovskaya, K.A.; Volk, T.R. The shift of the optical absorption edge at “optical damage” in LiNbO3. Phys. Status Solidi A 1976, 33, K137–K139. [Google Scholar] [CrossRef]
- Di Domenico, M.; Wemple, S.H. Oxygen-octahedra ferroelectrics. I. Theory of electro-optical and nonlinear optical effects. J. Appl. Phys. 1969, 40, 720–732. [Google Scholar] [CrossRef]
- Bhatt, R.; Bhaumik, I.; Ganesamoorthy, S.; Karnal, A.K.; Swami, M.K.; Patel, H.S.; Gupta, P.K. Urbach tail and bandgap analysis in near stoichiometric LiNbO3 crystals. Phys. Status Solidi A 2012, 209, 176–180. [Google Scholar] [CrossRef]
- Mendez, A.; de la Paliza, G.; García-Cabañes, A.; Cabrera, J.M. Comparison of the electro-optic coefficient r33 in well-defined phases of proton exchanged LiNbO3 waveguides. Appl. Phys. B 2001, 73, 485–488. [Google Scholar] [CrossRef]
Sample | Exchange Duration t(h) | Δne |
---|---|---|
S#1 | 1 h | 0.1014 |
S#2 | 2 h | 0.1027 |
S#3 | 3 h | 0.1031 |
S#4 | 4 h | 0.1033 |
S#5 | 5 h | 0.1034 |
Phase | I690/I630 [13] | I690/(I630 + I690) [13] | I690/(I630 + I690) [9] | νx(cm−1) [9] |
---|---|---|---|---|
κ1 | 0.43 ÷ 0.58 | 0.31 ÷ 0.37 | 0.19 ÷ 0.30 | 645 ÷ 654 |
κ2 | 0.72 ÷ 0.79 | 0.42 ÷ 0.46 | 0.34 ÷ 0.46 | 657 ÷ 669 |
β1 | 0.96 ÷ 1.10 | 0.48 ÷ 0.52 | 0.48 ÷ 0.52 | 687.5 |
β2 | 1.23 | 0.55 | 0.55 | 687.5 |
β3 and β4 | 1.64 | 0.62 | 0.62 | 690 |
Sample | t (h) | dk2/dk1/dα (μm) (m-Lines Data [1]) | Plateau in Plot I690/(I630 + I690) vs. t | dk2 (μm) | dk1 (μm) | dα (μm) |
---|---|---|---|---|---|---|
S#1 | 1 | 0.62/1.1/3.3 | 1.3 | 1.6 | 2.3 | 3.3 |
S#1a | 1 and 4 h (annealing) | - | - | - | - | ≈9.0 |
S#2 | 2 | 1.78/2.1/4.4 | 1.76 | 2.3 | 2.6 | 4.3 |
S#3 | 3 | 2.30/3.5/6.6 | 2.39 | 2.6 | 3.0 | 5.0 |
S#4 | 4 | 2.80/4.0/6.6 | 2.71 | 3.6 | 4.3 | 6.0 |
S#5 | 5 | 3.30/4.6/10.9 | 3.29 | 3.6 | 4.3 | >8.0 |
Sample | Apparent Edge (nm) | AE (nm) | Eg,n (eV) | ΔEg,n (eV) | r13,n′ |
---|---|---|---|---|---|
S#0 | 315.30 | 318.55 | 3.936 | 0 | 1 |
S#1a | 317.20 | 321.05 | 3.908 ÷ 3.914 | −(0.022 ÷ 0.028) | 0.76 ÷ 0.79 |
S#1 | 318.33 | 322.10 | 3.887 ÷ 3.893 | −(0.043 ÷ 0.049) | 0.66 ÷ 0.69 |
S#2 | 320.04 | 323.80 | 3.873 ÷ 3.877 | −(0.059 ÷ 0.063) | 0.58 ÷ 0.60 |
S#3 | 321.60 | 325.25 | 3.854 ÷ 3.858 | −(0.078 ÷ 0.082) | 0.48 ÷ 0.50 |
S#4 | 322.67 | 326.37 | 3.838 ÷ 3.842 | −(0.094 ÷ 0.098) | 0.40 ÷ 0.42 |
S#5 | 324.30 | 327.85 | 3.830 ÷ 3.834 | −(0.102 ÷ 0.106) | 0.36 ÷ 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rambu, A.P.; Kostritskii, S.; Fedorov, V.; Sevostyanov, O.; Chirkova, I.; Tascu, S. Phase Composition of HiVac-VPE Lithium Niobate Optical Waveguides Identified by Spectroscopic Investigations. Materials 2024, 17, 2249. https://doi.org/10.3390/ma17102249
Rambu AP, Kostritskii S, Fedorov V, Sevostyanov O, Chirkova I, Tascu S. Phase Composition of HiVac-VPE Lithium Niobate Optical Waveguides Identified by Spectroscopic Investigations. Materials. 2024; 17(10):2249. https://doi.org/10.3390/ma17102249
Chicago/Turabian StyleRambu, Alicia Petronela, Sergey Kostritskii, Vyacheslav Fedorov, Oleg Sevostyanov, Irina Chirkova, and Sorin Tascu. 2024. "Phase Composition of HiVac-VPE Lithium Niobate Optical Waveguides Identified by Spectroscopic Investigations" Materials 17, no. 10: 2249. https://doi.org/10.3390/ma17102249
APA StyleRambu, A. P., Kostritskii, S., Fedorov, V., Sevostyanov, O., Chirkova, I., & Tascu, S. (2024). Phase Composition of HiVac-VPE Lithium Niobate Optical Waveguides Identified by Spectroscopic Investigations. Materials, 17(10), 2249. https://doi.org/10.3390/ma17102249