Ternary Graphene Oxide and Titania Nanoparticles-Based Nanocomposites for Dye Photocatalytic Degradation: A Review
Abstract
:1. Introduction
1.1. AOP (Advanced Oxidation Processes)
1.2. Photocatalysis
1.3. Dyes
1.4. Graphene Oxide (GO)
1.5. rGO (Reduced Graphene Oxide)
1.6. TiO2
1.7. Degussa P25
2. Binary Nanocomposites GO/TiO2
3. Ternary Nanocomposites GO/TiO2/X
3.1. X = Metals
Dye Degraded | Catalyst | Catalyst Efficiency | Degradation Time | Radiation Type | Reference | ||
---|---|---|---|---|---|---|---|
Metal | Composite Synthesis Process | Ternary Composite | TiO2 | ||||
Methylene blue | Au-Pt | Chemical and thermal | 100% | 20% | 3 h | UV-Vis | [60] |
Amaranth | Pt | Chemical, mixed by sonication | 85.6% + 99.56% - | * 75.61% + * 99.99% - | 3 h | UV Solar | [61] |
Sunset yellow | 77.78% + 99.15% - | * 67.87% + * 98.67% - | |||||
Tartrazine | 65.32% + 96.23% - | * 58.74% + * 96.1% - | |||||
Acid orange 7 | Pt | Chemical and hydrothermal | 99.1% | # 45.06% | 6 h | Solar | [62] |
Rhodamine B | Pt | Chemical, microwave assisted | 60% + 30% ++ | WD | 150 min | UV Visible | [63] |
Crystal violet | Ce Fe | Sonochemical | 54.2% with Ce 74.3% with Fe | # 40.5% | 35 min | UV | [64] |
Rhodamine B | Ag | Solvothermal | 100% | 15% | 60 min | Visible | [65] |
Amaranth | Ag | Chemical, mixed by sonication | 100% + 100% - | * 99.2% + * 99.96% - | 4 h + 3 h - | UV Solar | [66] |
Orange II | Ag | Sol-gel, mixed by stirring | 90% + 40% ++ | 90% + 5% ++ | 2 h | UV Visible | [67] |
Black 5 | 100% + 30% ++ | 80% + 10% ++ | |||||
Methyl orange | Ag | Sol-gel and thermal | 97.67% | 72.53% | 3 h | Solar | [68] |
Rhodamine B | Ag | Chemical, microwave assisted | 99% | 88% | 3 h | UV | [69] |
Indigo carmine | Gd | Hummers’ method, sol-gel | 97% | 19% | 210 min | Visible | [70] |
3.2. X = Semiconductors
3.3. X = Magnetic Nanomaterials
3.3.1. GO/TiO2/Magnetite
3.3.2. Other Magnetic Materials
3.4. X = Other
4. Conclusions
5. Challenges and Perspectives
Funding
Conflicts of Interest
References
- UNESCO. International Initiative on Water Quality. Available online: https://en.unesco.org/waterquality-iiwq/wq-challenge (accessed on 21 August 2023).
- Guevara, S.; Arellano, O.; Fricke, J. Ríos Tóxicos: Lerma y Atoyac. La Historia de Negligencia Continua; Greenpeace Report 2014; Greenpeace: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Dutta, D.; Arya, S.; Kumar, S. Industrial wastewater treatment: Current trends, bottle necks and best practices. Chemosphere 2021, 285, 131245. [Google Scholar] [CrossRef] [PubMed]
- Singhal, N.; Perez-Garcia, O. Degrading organic micropollutants: The next challenge in the evolution of biological wastewater treatment processes. Front. Environ. Sci. 2016, 4, 36. [Google Scholar] [CrossRef]
- Ghime, D.; Ghosh, P. Powerful treatment option for the removal of recalcitrant organic compounds. In Advanced Oxidation Processes-Applications, Trends, and Prospects; IntechOpen: London, UK, 2020. [Google Scholar]
- Pandis, P.K.; Kanellou, C.K.E.; Vaitsis, C.; Savvidou, M.G.; Sourkouni, G.; Zorpas, A.A.; Argirusis, C. Key points of Advanced Oxidation Processes (AOPs) for wastewater, organic pollutants and pharmaceutical waste treatment: A mini review. Chem. Eng. 2022, 6, 8. [Google Scholar] [CrossRef]
- Linsebigler, A.L.; Lu, G.; Yates, J.T., Jr. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95, 735–758. [Google Scholar] [CrossRef]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Abel, A. History of dyes and pigments: From natural dyes to high performance pigments. In Colour Design. Theories and Applications, 2nd ed.; Woodhead Publishing: Sawston, UK, 2012; pp. 557–587. [Google Scholar]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Kant, R. Textile dyeing industry an environmental hazard. Nat. Sci. 2012, 4, 22–26. [Google Scholar] [CrossRef]
- Available online: https://www.marketsandmarkets.com/Market-Reports/textile-dye-market-226167405.html?gclid=CjwKCAjw1t2pBhAFEiwA_-A-NN-sEZFdiyIBNrUk6e2jlt0T-tk4njQwiJ8lTPqqUfoCTaghorDbzRoCj20QAvD_BwE (accessed on 31 October 2023).
- Chiu, Y.-H.; Chang, T.-F.M.; Chen, C.-Y.; Sone, M.; Hsu, Y.-J. Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts 2019, 9, 430. [Google Scholar] [CrossRef]
- Gottlieb, A.; Shaw, C.; Smith, A.; Wheatley, A.; Forsythe; Forsythe, S. The toxicity of textile reactive azo dyes after hydrolysis and decolourisation. J. Biotechnol. 2003, 101, 49–56. [Google Scholar] [CrossRef]
- de Lima, R.O.A.; Bazo, A.P.; Salvadori, D.M.F.; Rech, C.M.; de Palma Oliveira, D.; de Aragão Umbuzeiro, G. Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source. Mutat. Res. 2007, 626, 53–60. [Google Scholar] [CrossRef]
- Ajmal, A.; Majeed, I.; Malik, R.N.; Idriss, H.; Nadeem, M.A. Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: A comparative overview. RSC Adv. 2014, 4, 37003. [Google Scholar] [CrossRef]
- Chiou, Y.-C.; Olukan, T.A.; Almahri, M.A.; Apostoleris, H.; Chiu, C.H.; Lai, C.-Y.; Lu, J.-Y.; Santos, S.; Almansouri, I.; Chiesa, M. Direct measurement of the magnitude of the van der Waals interaction of single and multilayer graphene. Langmuir 2018, 34, 12335–12343. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 302, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Morozov, S.V.; Novoselov, K.S.; Katsnelson, M.I.; Schedin, F.; Elias, D.C.; Jaszczak, J.A.; Geim, A.K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Cruz, A.; Ruiz-Hernández, A.R.; Vega-Clemente, J.F.; Luna-Gazcón, D.G.; Campos-Delgado, J. A review of top-down and bottom-up synthesis methods for the production of graphene, graphene oxide and reduced graphene oxide. J. Mater. Sci. 2022, 57, 14543–14578. [Google Scholar] [CrossRef]
- Wang, S.; Ang, P.K.; Wang, Z.; Tang, A.L.L.; Thong, J.T.L.; Loh, K.P. High mobility, printable and solution-processed graphene electronics. Nano Lett. 2010, 10, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Liu, L.; Li, F. Chapter 3 Structural Modeling and Physical Properties. In Graphene Oxide: Physics and Applications; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Loh, K.P.; Bao, Q.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2, 1015–1024. [Google Scholar] [CrossRef]
- Lunie, M.; Šljivančanin, Ž.; Tomić, S. Electronic and optical properties of reduced graphene oxide. J. Mater. Chem. C 2015, 3, 7632. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Mohan, R.; Kim, S.-J. Graphene oxide as a photocatalytic material. Appl. Phys. Lett. 2011, 98, 244101. [Google Scholar] [CrossRef]
- Hsu, H.-C.; Shown, I.; Wei, H.-Y.; Chang, Y.-C.; Du, H.-Y.; Lin, Y.-G.; Tseng, C.-A.; Wang, C.-H.; Chen, L.-C.; Lin, Y.-C.; et al. Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale 2013, 5, 262. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Akhavan, O.; Ghaderi, E. Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J. Phys. Chem. C 2009, 113, 20214–20220. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef] [PubMed]
- Pei, S.; Cheng, H.M. The reduction of graphene oxide. Carbon 2012, 50, 3210–3228. [Google Scholar] [CrossRef]
- Weirich, T.E.; Winterer, M.; Seifried, S.; Hahn, H.; Fuess, H. Rietveld analysis of electron powder diffraction data from nanocrystalline anatase, TiO2. Ultramicroscopy 2000, 81, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Crystallography Open Database (COD) # 1530150. Available online: https://www.crystallography.net/cod/1530150.html (accessed on 17 October 2023).
- Crystallography Open Database (COD) # 8104269. Available online: https://www.crystallography.net/cod/8104269.html (accessed on 17 October 2023).
- Guo, Q.; Zhou, C.; Ma, Z.; Yang, X. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges. Adv. Mater. 2019, 31, 1901997. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Banfield, J.F. Structural characteristics and mechanical and thermodynamic properties of nanocrystalline TiO2. Chem. Rev. 2014, 114, 9613–9644. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, P.; Guo, L.; Chen, Z.; Wu, Q.; Ding, Y.; Zheng, W.; Cao, Y. The design of TiO2 nanostructures (nanoparticle, nanotube, and nanosheet) and their photocatalytic activity. J. Phys. Chem. C 2014, 118, 12727–12733. [Google Scholar] [CrossRef]
- Morales-García, A.; Escatllar, A.M.; Illas, F.; Bromley, S. Understanding the interplay between size, morphology and energy gap in photoactive TiO2 nanoparticles. Nanoscale 2019, 11, 9032–9041. [Google Scholar] [CrossRef]
- Di Paola, A.; Bellardita, M.; Palmisano, L. Brookite, the least known TiO2 photocatalyst. Catalysts 2013, 3, 36–73. [Google Scholar] [CrossRef]
- Yin, H.; Wada, Y.; Kitamura, T.; Kambe, S.; Murasawa, S.; Mori, H.; Sakata, T.; Yanagida, S. Hydrothermal syntesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2. J. Mater. Chem. 2001, 11, 1694–1703. [Google Scholar] [CrossRef]
- Lamiel-Garcia, O.; Cuko, A.; Clatayud, M.; Illas, F.; Bromley, S.T. Predicting size-dependent emergence of crystallinity in nanomaterials: Titania nanoclusters versus nanocrystals. Nanoscale 2017, 9, 1049–1058. [Google Scholar] [CrossRef] [PubMed]
- Barakat, M.A.; Kumar, R. Photocatalytic Activity Enhancement of Titanium Dioxide Nanoparticles, Degradation of Pollutants in Wastewater. In Springer Briefs in Molecular Science Green Chemistry for Sustainability; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Abdullah, A.M.; Gracia-Pinilla, M.A.; Pillai, S.C.; O’Shea, K. UV and visible light-driven production of hydroxyl radicals by reduced forms of N, F, and P codoped titanium dioxide. Molecules 2019, 24, 2147. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yang, B.; Chen, W.; Yang, J. Preparation and photocatalytic activities of TiO2-based composite catalysts. Catalysts 2022, 12, 1263. [Google Scholar] [CrossRef]
- Addamo, M.; Augugliaro, V.; Di Paola, A.; García-López, E.; Loddo, V.; Marcì, G.; Palmisano, L. Preparation and photoactivity of nanostructured TiO2 particles obtained by hydrolysis of TiCl4. Colloids Surf. A 2005, 265, 23. [Google Scholar] [CrossRef]
- Moeinzadeh, S.; Jabbari, E. Chapter 11 Nanoparticles and Their Applications. In Springer Handbook of Nanotechnology, 4th ed.; Bhushan, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Liang, R.; Hu, A.; Hatat-Fraile, M. Chapter 2 Development of TiO2 Nanowires for Membrane Filtration Applications. In Nanotechnology for Water Treatment and Purification; Hu, A., Apblett, A., Eds.; Lecture Notes in Nanoscale Science and Technology; Springer: Berlin/Heidelberg, Germany, 2014; Volume 22. [Google Scholar]
- Mamaghani, A.H.; Haghighat, F.; Lee, C.-S. Hydrothermal/solvothermal synthesis and treatment of TiO2 for photocatalytic degradation of air pollutants: Preparation, characterization, properties and performance. Chemosphere 2019, 219, 804–825. [Google Scholar] [CrossRef]
- Ohno, T.; Sarukawa, K.; Tokieda, K.; Matsumura, M. Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. J. Catal. 2001, 203, 82–86. [Google Scholar] [CrossRef]
- Ohtani, B.; Prieto-Mahaney, O.O.; Li, D.; Abe, R. What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J. Photochem. Photobiol. A Chem. 2010, 216, 1792010182. [Google Scholar] [CrossRef]
- Ohno, T.; Sarukawa, K.; Matsumura, M. Photocatalytic activities of pure rutile particles isolated from TiO2 powder by dissolving the anatase component in HF solution. J. Phys. Chem. B 2001, 105, 2417–2420. [Google Scholar] [CrossRef]
- Riegel, G.; Bolton, J.R. Photocatalytic efficiency variability in TiO2 particles. J. Phys. Chem. 1995, 99, 4215–4224. [Google Scholar] [CrossRef]
- Hurum, D.C.; Agrios, A.G.; Gray, K.A. Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 2003, 107, 4545–4549. [Google Scholar] [CrossRef]
- Leary, R.; Westwood, A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 2011, 49, 741–772. [Google Scholar] [CrossRef]
- Khalid, N.R.; Majid, A.; Tahir, M.B.; Niaz, N.A.; Khalid, S. Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: A review. Ceram. Int. 2017, 43, 14552–14571. [Google Scholar] [CrossRef]
- Purabgola, A.; Mayilswamy, N.; Kandasubramanian, B. Graphene-based TiO2 composites for photocatalysis & environmental remediation: Synthesis and progress. Environ. Sci. Pollut. Res. 2022, 29, 32305–32325. [Google Scholar] [CrossRef]
- Morales-Torres, S.; Pastrana-Martínez, L.M.; Figueiredo, J.L.; Faria, J.L.; Silva, A.M.T. Graphene oxide-P25 photocatalysists for degradation of diphenhydramine pharmaceutical and methyl orange dye. Appl. Surf. Sci. 2013, 275, 361–368. [Google Scholar] [CrossRef]
- Fu, Z.; Zhang, S.; Fu, Z. Preparation of multicycle GO/TiO2 composite photocatalyst and study on degradation of methylene blue synthetic wastewater. Appl. Sci. 2019, 9, 3282. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, K. Reduced graphene oxide-TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B. J. Mol. Catal. A Chem. 2011, 345, 101–107. [Google Scholar] [CrossRef]
- Moustafa, H.M.; Mahmoud, M.S.; Nassar, M.M. Kinetic analysis of p-rGO/n-TiO2 nanocomposite generated by hydrothermal technique for simultaneous photocatalytic water splitting and degradation of methylene blue dye. Environ. Sci. Pollut. Res. 2023, 30, 18181–18198. [Google Scholar] [CrossRef]
- Saber, N.B.; Mezni, A.; Alrooqi, A.; Altalhi, T. Enhancement of photocatalytic activity using ternary Au@Pt-TiO2/nano-GO heterojunction for environmental remediation and clean energy production. Mater. Res. Express 2021, 8, 045014. [Google Scholar] [CrossRef]
- Roşu, M.-C.; Coroş, M.; Pogăcean, F.; Măgeruşan, L.; Socaci, C.; Turza, A.; Pruneanu, S. Azo dyes degradation using TiO2-Pt/graphene oxide and TiO2-Pt/reduced graphene oxide photocatalysts under UV and natural sunlight irradiation. Solid State Sci. 2017, 70, 13–20. [Google Scholar] [CrossRef]
- Hsieh, S.H.; Chen, W.J.; Wu, C.T. Pt-TiO2/graphene photocatalysts for degradation of AO7 dye under visible light. Appl. Surf. Sci. 2015, 340, 9–17. [Google Scholar] [CrossRef]
- Ullah, K.; Zhu, L.; Meng, Z.-D.; Ye, S.; Sun, Q.; Oh, W.-C. A facile and fast synthesis of novel composite Pt-graphene/TiO2 with enhanced photocatalytic activity under UV/Visible light. Chem. Eng. J. 2013, 231, 76–83. [Google Scholar] [CrossRef]
- Shende, T.P.; Bhanvase, B.A.; Rathod, A.P.; Pinjari, D.V.; Sonawane, S.H. Sonochemical synthesis of graphene-Ce-TiO2 and graphene-Fe-TiO2 ternary hybrid photocatalyst nanocomposite and its application in degradation of crystal violet dye. Ultrason. Sonochem. 2018, 41, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.S.A.S.; Zhang, K.; Park, A.R.; Kim, K.S.; Park, N.-G.; Park, J.H.; Yoo, P.J. Single-step solvothermal synthesis of mesoporous Ag-TiO2-reduced graphene oxide ternary composites with enhanced photocatalytic activity. Nanoscale 2013, 5, 5093. [Google Scholar] [CrossRef] [PubMed]
- Roşu, M.-C.; Socaci, C.; Floare-Avram, V.; Borodi, G.; Pogăcean, F.; Coroş, M.; Măgeruşan, L.; Pruneanu, S. Photocatalytic performance of graphene/TiO2-Ag composites on amaranth dye degradation. Mater. Chem. Phys. 2016, 179, 232–241. [Google Scholar] [CrossRef]
- May-Lozano, M.; Lopez-Medina, R.; Escamilla, V.M.; Rivadeneyra-Romero, G.; Alonzo-Garcia, A.; Morales-Mora, M.; González-Díaz, M.O.; Martínez-Delgadillo, S.A. Intensification of the Orange II and Black 5 degradation by sonophotocatalysis using Ag-graphene oxide/TiO2 systems. Chem. Eng. Process.-Process Intensif. 2020, 158, 108175. [Google Scholar] [CrossRef]
- Al-Mamun, M.R.; Karim, M.N.; Nitun, N.A.; Kader, S.; Islam, M.S.; Khan, M.Z.H. Photocatalytic performance assessment of GO and Ag co-synthesized TiO2 nanocomposite for the removal of methyl orange dye under solar irradiation. Environ. Technol. Innov. 2021, 22, 101537. [Google Scholar] [CrossRef]
- de Almeida, G.C.; Mohallem, N.D.S.; Viana, M.M. Ag/GO/TiO2 nanocomposites: The role of the interfacial charge transfer for application in photocatalysis. Nanotechnology 2022, 33, 035710. [Google Scholar] [CrossRef]
- Oppong, S.O.-B.; Opoku, F.; Govender, P.P. Tuning the electronic and structural properties of Gd-TiO2-GO nanocomposites for enhancing photodegradation of IC dye: The role of Gd3+ ion. Appl. Catal. B Environ. 2019, 243, 106–120. [Google Scholar] [CrossRef]
- Raghavan, N.; Thangavel, S.; Venugopal, G. Enhanced photocatalytic degradation of methylene blue by reduced graphene-oxide/titanium dioxide/zinc oxide ternary nanocomposites. Mater. Sci. Semicond. Process. 2015, 30, 321–329. [Google Scholar] [CrossRef]
- Raliya, R.; Avery, C.; Chakrabarti, S.; Biswas, P. Photocatalytic degradation of methyl orange dye by pristine titanium dioxide, zinc oxide, and graphene oxide nanostructures and their composites under visible light irradiation. Appl. Nanosci. 2017, 7, 253–259. [Google Scholar] [CrossRef]
- Potle, V.D.; Shirsath, S.R.; Bhanvase, B.A.; Saharan, V.K. Sonochemical preparation of ternary rGO-ZnO-TiO2 nanocomposite photocatalyst for efficient degradation of crystal violet dye. Optik 2020, 208, 164555. [Google Scholar] [CrossRef]
- Kumar, A.; Rout, L.; Achary, L.S.K.; Mohanty, A.; Dhaka, R.S.; Dash, P. An investigation into the solar light-driven enhanced photocatalytic properties of a graphene oxide-SnO2-TiO2 ternary nanocomposite. RSC Adv. 2016, 6, 32074–32088. [Google Scholar] [CrossRef]
- Zhu, Z.; Han, Q.; Yu, D.; Sun, J.; Liu, B. A novel p-n heterojunction of BiVO4/TiO2/GO composite for enhanced visible-light-driven photocatalytic activity. Mater. Lett. 2017, 209, 379–383. [Google Scholar] [CrossRef]
- Jing, Z.; Dai, X.; Xian, X.; Zhang, Q.; Zhong, H.; Li, Y. Novel ternary heterogeneous reduction graphene oxide (RGO)/BiOCl/TiO2 nanocomposites for enhanced adsorption and visible-light induced photocatalytic activity toward organic contaminants. Materials 2020, 13, 2529. [Google Scholar] [CrossRef] [PubMed]
- Zarrin, S.; Heshmatpour, F. Photocatalytic activity of TiO2/Nb2O5/PANI and TiO2/Nb2O5/RGO as new nanocomposites for degradation of organic pollutants. J. Hazard. Mater. 2018, 351, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Sheu, F.-J.; Cho, C.-P.; Liao, Y.-T.; Yu, C.-T. Ag3PO4-TiO2-graphene oxide ternary composites with efficient photodegradation, hydrogen evolution, and antibacterial properties. Catalysts 2018, 8, 57. [Google Scholar] [CrossRef]
- Kausor, M.A.; Chakrabortty, D. Facile fabrication of N-TiO2/Ag3PO4@GO nanocomposite toward photodegradation of organic dye under visible light. Inorg. Chem. Commun. 2020, 116, 107907. [Google Scholar] [CrossRef]
- Shehzad, N.; Zafar, M.; Ashfaq, M.; Razzaq, A.; Akhter, P.; Ahmad, N.; Hafeez, A.; Azam, K.; Hussain, M.; Kim, W.Y. Development of AgFeO2/rGO/TiO2 ternary composite photocatalysts for enhanced photocatalytic dye decolorization. Crystals 2020, 10, 923. [Google Scholar] [CrossRef]
- Hasan, J.; Li, H.; Tian, G.; Qin, C. Fabrication of Cr2S3-GO-TiO2 composite with high visible-light-driven photocatalytic activity on degradation of organic dyes. Chem. Phys. 2020, 539, 110950. [Google Scholar] [CrossRef]
- Ren, X.; Guo, M.; Xue, L.; Xu, L.; Li, L.; Yang, L.; Wang, M.; Xin, Y.; Ding, F.; Wang, Y. Photoelectrochemical performance and S-scheme mechanism of ternary GO/g-C3N4/TiO2 heterojunction photocatalyst for photocatalytic antibiosis and dye degradation under visible light. Appl. Surf. Sci. 2023, 630, 157446. [Google Scholar] [CrossRef]
- Park, C.-Y.; Choi, J.-G.; Ghosh, T.; Meng, Z.-D.; Zhu, L.; Oh, W.-C. Preparation of ZnS-graphene/TiO2 composites designed for their high photonic effect and photocatalytic activity under visible light. Fuller. Nanotub. Carbon Nanostruct. 2014, 22, 630–642. [Google Scholar] [CrossRef]
- Qin, Y.L.; Zhao, W.W.; Sun, Z.; Liu, W.Y.; Shi, G.L.; Liu, Z.Y.; Ni, D.R.; Ma, Z.Y. Photocatalytic and adsorption property of ZnS-TiO2/RGO ternary composites for methylene blue degradation. Adsorpt. Sci. Technol. 2019, 37, 764–776. [Google Scholar] [CrossRef]
- Kale, D.P.; Deshmukh, S.P.; Shirsath, S.R.; Bhanvase, B.A. Sonochemical preparation of multifunctional rGO-ZnS-TiO2 ternary nanocomposite and its application for CV dye removal. Optik 2020, 208, 164532. [Google Scholar] [CrossRef]
- Maarisetty, D.; Mahanta, S.; Sahoo, A.K.; Mohopatra, P.; Baral, S.S. Sterring the charge kinetics in dual-functional photocatalysis by surface dipole moments and band edge modulation: A defect study in TiO2-ZnS-rGO composites. Appl. Mater. Interfaces 2020, 12, 11679–11692. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Geng, Z.; Cai, H.; Ma, L.; Chen, J.; Zeng, J.; Pan, N.; Wang, X. Ternary graphene-TiO2-Fe3O4 nanocomposite as a recollectable photocatalyst with enhanced durability. Eur. J. Inorg. Chem. 2012, 2012, 4439–4444. [Google Scholar] [CrossRef]
- Cheng, Z.; Ding, D.; Nie, X.; Xu, Y.; Song, Z.; Fu, T.; Chen, Z.; Tan, W. Fabrication of GO/magnetic graphitic nanocapsule/TiO2 assemblies as efficient and recyclable photocatalysts. Surf. China Chem. 2015, 58, 1131–1136. [Google Scholar] [CrossRef]
- Sedghi, R.; Heidari, F. A novel & effective visible light-driven TiO2/magnetic porous graphene oxide nanocomposite for the degradation of dye pollutants. RSC Adv. 2016, 6, 49459. [Google Scholar] [CrossRef]
- Nada, A.A.; Tantawy, H.R.; Elsayed, M.A.; Bechelany, M.; Elmowafy, M.E. Elaboration of nano titania-magnetic reduced graphene oxide for degradation of tartrazine dye in aqueous solution. Solid State Sci. 2018, 78, 116–125. [Google Scholar] [CrossRef]
- Thongpool, V.; Phunpueok, A.; Jaiyen, S. Preparation, characterization and photocatalytic activity of ternary graphene-Fe3O4:TiO2 nanocomposites. Dig. J. Nanomater. Biostruct. 2018, 13, 499–504. [Google Scholar]
- Nadimi, M.; Saravani, A.Z.; Aroon, M.A.; Pirbazari, A.E. Photodegradation of methylene blue by a ternary magnetic TiO2/Fe3O4/graphene oxide nanocomposite under visible light. Mater. Chem. Phys. 2019, 225, 464–474. [Google Scholar] [CrossRef]
- Rashidzadeh, B.; Fathalipour, S.; Hosseini, S.P.; Bazazi, S. Alginate doped graphene oxide-TiO2-Fe3O4 nanocomposite: Preparation, characterization, and application of sonophotocatalyst for efficient decomposition of an organic dye. Int. J. Environ. Anal. Chem. 2022, 1–17. [Google Scholar] [CrossRef]
- Ma, P.; Jiang, W.; Wang, F.; Li, F.; Shen, P.; Chen, M.; Wang, Y.; Liu, J.; Li, P. Synthesis and photocatalytic property of Fe3O4@TiO2 core/shell nanoparticles supported by reduced graphene oxide sheets. J. Alloys Compd. 2013, 578, 501–506. [Google Scholar] [CrossRef]
- Li, Z.-Q.; Wang, H.-L.; Zi, L.-Y.; Zhang, J.-J.; Zhang, Y.-S. Preparation and photocatalytic performance of magnetic TiO2-Fe3O4/graphene (RGO) composites under VIS-light irradiation. Ceram. Int. 2015, 41, 10634–10643. [Google Scholar] [CrossRef]
- Piranshahi, Z.A.; Behbahani, M.; Zeraatpisheh, F. Synthesis, characterization and photocatalytic application of TiO2/magnetic graphene for efficient photodegradation of crystal violet. Appl. Organomet. Chem. 2018, 32, e3985. [Google Scholar] [CrossRef]
- Nguyen, K.D.V.; Vo, K.D.N. Magnetite nanoparticles-TiO2 nanoparticles-graphene oxide nanocomposite: Synthesis, characterization and photocatalytic degradation for Rhodamine-B dye. AIMS Mater. Sci. 2020, 7, 288–301. [Google Scholar] [CrossRef]
- Linley, S.; Liu, Y.Y.; Ptacek, C.J.; Blowes, D.W.; Gu, F.X. Recyclable Graphene oxide-supported titanium dioxide photocatalysts with tunable properties. ACS Appl. Mater. Interfaces 2014, 6, 4658–4668. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, W.-N.; Biswas, P.; Fortner, J.D. Facile aerosol synthesis and characterization of ternary crumpled graphene-TiO2-magnetite nanocomposites for advanced water treatment. ACS Appl. Mater. Interfaces 2014, 6, 11766–11774. [Google Scholar] [CrossRef]
- Ghosh, B.K.; Moitra, D.; Chandel, M.; Ghosh, N.N. Preparation of TiO2/Cobalt ferrite/reduced graphene oxide nanocomposite based magnetically separable catalyst with improved photocatalytic activity. J. Nanosci. Nanotechnol. 2017, 17, 4694–4703. [Google Scholar] [CrossRef]
- Sun, J.; Fu, Y.; Xiong, P.; Sun, X.; Xu, B.; Wang, X. A magnetically separable P25/CoFe2O4/graphene catalyst with enhanced adsorption capacity and visible-light-driven photocatalytic activity. RSC Adv. 2013, 3, 22490–22497. [Google Scholar] [CrossRef]
- Kaur, J.; Kaur, M. Facile fabrication of ternary nanocomposite of MgFe2O4-TiO2@GO for synergistic adsorption and photocatalytic degradation studies. Ceram. Int. 2019, 45, 8646–8659. [Google Scholar] [CrossRef]
- Saravani, A.Z.; Nadimi, M.; Aroon, M.A.; Pirbazari, A.E. Magnetic TiO2/NiFe2O4/reduced graphene oxide nanocomposite as a recyclable photocatalyst for photocatalytic removal of methylene blue under visible light. J. Alloys Compd. 2019, 803, 291–306. [Google Scholar] [CrossRef]
- Jihad, K.M.; Roknabadi, M.R.; Mohammadi, M.; Goharshadi, E.K. Reduced graphene oxide/TiO2/NiFe2O4 nanocomposite as a stable photocatalyst and strong antibacterial agent. Res. Sq. 2023, 33, 43. [Google Scholar] [CrossRef]
- Munikrishnappa, C.; Kumar, S.; Shivakumara, S.; Rao, G.M.; Munichandraiah, N. The TiO2-graphene oxide-Hemin ternary hybrid composite material as an efficient heterogeneous catalyst for the degradation of organic contaminants. J. Sci. Adv. Mater. Devices 2019, 4, 80–88. [Google Scholar] [CrossRef]
- Ranjith, R.; Maruthamuthu, D.; Prabhavathi, S.P.; Rajam, P.S. Enhanced adsorption and photocatalytic removal of cationic dyes in aqueous solutions by ternary graphene oxide-TiO2-SiO2 nanocomposites. J. Nanosci. Nanotechnol. 2019, 19, 5529–5545. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.H.; Alahmad, W. Modeling the removal of methylene blue dye using a graphene oxide/TiO2/SiO2 nanocomposite under sunlight irradiation by intelligent system. Open Chem. 2021, 19, 157–173. [Google Scholar] [CrossRef]
- Kumar, A.; Raorane, C.J.; Syed, A.; Bahkali, A.H.; Elgorban, A.M.; Raj, V.; Kim, S.C. Synthesis of TiO2, TiO2/PAni, TiO2/PAni/GO nanocomposites and photodegradation of anionic dyes Rose Bengal and thymol blue in visible light. Environ. Res. 2023, 216, 114741. [Google Scholar] [CrossRef]
- Vanitha, C.; Abirami, R.; Chandraleka, S.; Kuppusamy, M.R.; Sridhar, T.M. Green synthesis of photocatalyst hydroxyapatite doped TiO2/GO ternary nanocomposites for removal of methylene blue dye. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
Dye Degraded | Catalyst | Catalyst Efficiency | Degradation Time | Radiation Type | Reference | ||
---|---|---|---|---|---|---|---|
Semi Conductor | Composite Synthesis Process | Ternary Nanocomposite | TiO2 | ||||
Methylene blue | ZnO | Hummers’ method, solvothermal | 92% | 47% | 120 min | Visible | [71] |
Methyl orange | ZnO | Hummers’ method, hydrothermal, sol-gel and mixed by sonication | 44.2% | 28% | 120 min | Visible | [72] |
Crystal violet | ZnO | Hummers’ method, sonochemical | 89.63% | WD | 20 min | UV | [73] |
Congo red | SnO2 | Hummers’ method, solvothermal | 98% | 26% | 70 min | Solar | [74] |
Methylene blue | 96% | 21% | 60 min | ||||
Reactive Blue 19 | BiVO4 | Hummers’ method, hydrothermal | 95.87% | * 35.6% | 90 min | Visible | [75] |
Methylene blue | BiOCl | Hummers’ method, solvothermal | 98.2% | # 72.5% | 40 min | Visible | [76] |
Amido Black-10B | 96% | WD | 10 min | ||||
Methyl orange | 98.3% | WD | 15 min | ||||
Rhodamine B | 90.5% | WD | 5 min | ||||
Methylene blue | Nb2O5 | Hydrothermal | 97% | 35% | 4 h | Visible | [77] |
Methyl orange | 93% | 15% | |||||
Methylene orange | Ag3PO4 | Modified Hummers’ method | 80% | WD | 120 min | Visible | [78] |
Acid Blue 25 | Ag3PO4 | Hummers’ method, chemical | 97% | 25% | 45 min | Visible | [79] |
Methylene blue | AgFeO2 | Chemical and reflux | 100% | 98% | 30 min | UV-Vis | [80] |
Methylene blue | Cr2S3 | Modified Hummers’ method, sol-gel | 98.3% | 60% | 120 min | Visible | [81] |
Rhodamine B | 96.6% | 64% | |||||
Methyl orange | 86.3% | 50% | |||||
Methylene blue | g-C3N4 | Sol-gel, solvothermal, calcination | 98.84% | 38% | 120 min | Visible | [82] |
Methylene blue | ZnS | Modified Hummers’ method, sol-gel | 90.1% | $ 10% | 150 min | Visible | [83] |
Methylene blue | ZnS | Solvothermal | 90% | □ 30% | 120 min | Visible | [84] |
Crystal violet | ZnS | Modified Hummers’ method, sonochemical | 97.02% | WD | 50 min | Visible | [85] |
Methylene blue | ZnS | Modified Hummers’ method, solvothermal | 100% | 35% | WD | Solar | [86] |
Dye Degraded | Catalyst | Catalyst Efficiency | Degradation Time (min) | Radiation Type | Reusability | Reference | ||
---|---|---|---|---|---|---|---|---|
Material | Composite Synthesis Process | Composite | TiO2 | |||||
Rh B | GO/TiO2/Fe3O4 | Hummers’ method, hydrolysis, coprecipitation | 100% * | 47.5% | 25 | UV | 5 cycles | [87] |
Methyl orange | GO/Fe3O4/TiO2 | Impregnation, mixed by sonication | 100% * | 100% | 30 | Visible | 3 cycles ** | [88] |
Rh B | GO/Fe3O4/TiO2 | Hummers’ method, coprecipitation, hydrolysis, mix and reflux | 99% | 75% | 20 | Visible | 10 cycles | [89] |
Tartrazine | GO/Fe3O4/TiO2 | Hummers’ method, coprecipitation, hydrolysis, mixed by sonication | 95.5% | 10% | 210 | Visible | 4 cycles | [90] |
Methylene blue | GO/Fe3O4/TiO2 | Hummers’ method, hydrothermal | 88.11% + 90.52% ++ | 97.61 + 45% ++ | 55 | UV Visible | WD | [91] |
Methylene blue | GO/Fe3O4/TiO2 | Hummers’ method, sonochemical, hydrolysis | 82% + 76% ++ | 72.5% + 45% ++ | 90 | UV Visible | 4 cycles | [92] |
Malachite green | GO/Fe3O4/TiO2 | Hummers’ method, coprecipitation, sol-gel, mixed by sonication | 75% | WD | 60 | UV ∙ | 5 cycles | [93] |
Methyl orange | Fe3O4@TiO2/rGO | Solvothermal, vapor-thermal, hydrothermal | 83.8% | 33% | 50 | UV | WD | [94] |
Methylene blue | Fe3O4@TiO2/rGO | Hummers’ method, chemical, hydrolysis, hydrothermal | 99.5% | 58% | 120 | Visible | 5 cycles | [95] |
Crystal violet | GO/Fe3O4@TiO2 | Hummers’ method, coprecipitation, hydrolysis | 98.5% | WD | 60 | UV | 4 cycles | [96] |
Rh B | Fe3O4@TiO2/GO | Hummers’ method, hydrolysis, mixed by stirring | 52.9% | 27.2% | 60 | Solar | WD | [97] |
Methylene blue | Fe3O4@SiO2/TiO2/GO | Hydrothermal, Stöber reaction, hydrothermal | 92% * | 90% | 75 | UV | 5 cycles | [98] |
Methyl orange | Fe3O4/TiO2@GO | Hummers’ method, mixed by ultrasonication, aerolized | 98% | 75% | 60 | UV | 5 cycles | [99] |
Methyl orange | TiO2/CoFe2O4/rGO | Hummers’ method, chemical oxidation, reflux | 100% | # 10% | 75 | Visible | 5 cycles | [100] |
Methylene blue | TiO2/CoFe2O4/GO | Hummers’ method, hydrothermal | 99% | & 15% | 300 | Visible | 3 cycles | [101] |
Methylene blue | GO/MgFe2O4/TiO2 | Modified Hummers’ method, sol-gel, mixed by sonication | 99% + 99% ++ | 95% + 60% ++ | 120 | UV Visible | WD | [102] |
Methylene blue | TiO2/NiFe2O4/rGO | Hummers’ method, hydrothermal, mixed by sonication | 87% + 71% ++ | 74% + 42% ++ | 90 | UV Visible | 4 cycles | [103] |
Methylene blue | rGO/TiO2/NiFe2O4 | Hummers’ method, hydrothermal | 100% + 100% ++ | 98% + 5% ++ | 105 | UV Visible | 10 cycles | [104] |
Dye Degraded | Catalyst | Catalyst Efficiency | Degradation Time | Radiation Type | Reference | ||
---|---|---|---|---|---|---|---|
Third Component | Composite Synthesis Process | Ternary Nanocomposite | TiO2 | ||||
Rhodamine B | Hemin | Hummers’ method, sol-gel | 100% | 5% | 1 h | UV | [105]] |
Methylene blue | SiO2 | Improved Hummers’ method, sol-gel | 84.82% | 55% | 3 h | Visible | [106] |
Crystal violet | 85.45% | 65% | |||||
Methylene blue | SiO2 | Sol-gel | 99% | WD | 7 h | Solar | [107] |
Rose Bengal | Polyaniline | Hummers’ method, chemical | 97% | 25% | 3 h | Visible | [108] |
Thymol blue | 96% | 20% | |||||
Methylene blue | Hydroxyapatite | Hummers’ method, stirring and sonication | 98% | 22% | 1 h | UV | [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos-Delgado, J.; Mendoza, M.E. Ternary Graphene Oxide and Titania Nanoparticles-Based Nanocomposites for Dye Photocatalytic Degradation: A Review. Materials 2024, 17, 135. https://doi.org/10.3390/ma17010135
Campos-Delgado J, Mendoza ME. Ternary Graphene Oxide and Titania Nanoparticles-Based Nanocomposites for Dye Photocatalytic Degradation: A Review. Materials. 2024; 17(1):135. https://doi.org/10.3390/ma17010135
Chicago/Turabian StyleCampos-Delgado, Jessica, and María Eugenia Mendoza. 2024. "Ternary Graphene Oxide and Titania Nanoparticles-Based Nanocomposites for Dye Photocatalytic Degradation: A Review" Materials 17, no. 1: 135. https://doi.org/10.3390/ma17010135
APA StyleCampos-Delgado, J., & Mendoza, M. E. (2024). Ternary Graphene Oxide and Titania Nanoparticles-Based Nanocomposites for Dye Photocatalytic Degradation: A Review. Materials, 17(1), 135. https://doi.org/10.3390/ma17010135