Analysis of Surface Texture and Roughness in Composites Stiffening Ribs Formed by SPIF Process
Abstract
1. Introduction
2. Materials and Methods
2.1. Incremental Forming
2.2. Roughness Parameters
3. Results and Discussions
4. Conclusions
- The surfaace roughness of the stiffened ribs formed in Litecor® panel sheets highly depends on the SPIF process parameters, including (f) and (N).
- Case B, which had the highest (f) and (N), resulted in the smoothest surface texture with the lowest maximum height (Sz) value.
- Case A, which had the lowest (f) and (N), resulted in a rougher surface texture with a higher maximum height (Sz) value than case B.
- Case C, which had a low (N) but a high (f), resulted in a surface texture with a high maximum height (Sz) value and a more complex contour plot than cases A and B.
- The contour plots generated from the topography analyses provided a good visual representation of the surface texture and roughness of the stiffened ribs formed in Litecor® panel sheets, allowing for a more comprehensive analysis of the SPIF process parameters.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramnath, B.V.; Alagarraja, K.; Elanchezhian, C. Review on Sandwich Composite and their Applications. Mater. Today Proc. 2019, 16, 859–864. [Google Scholar] [CrossRef]
- Elghandour, E.; Elzayady, N. Comparison between honeycomb and composite corrugated cores in sandwich panels under compression loading. Int. J. Sustain. Mater. Struct. Syst. 2021, 5, 179. [Google Scholar] [CrossRef]
- Ulker, O. Surface Roughness of Composite Panels as a Quality Control Tool. Materials 2018, 11, 407. [Google Scholar] [CrossRef]
- Carey, J.P.; Melenka, G.W.; Hunt, A.; Cheung, B.; Ivey, M.; Ayranci, C. Braided composites in aerospace engineering. In Advanced Composite Materials for Aerospace Engineering; Elsevier: Amsterdam, The Netherlands, 2016; pp. 175–212. [Google Scholar] [CrossRef]
- Castanie, B.; Bouvet, C.; Ginot, M. Review of composite sandwich structure in aeronautic applications. Compos. Part C Open Access 2020, 1, 100004. [Google Scholar] [CrossRef]
- Kubit, A.; Al-Sabur, R.; Gradzik, A.; Ochał, K.; Slota, J.; Korzeniowski, M. Investigating Residual Stresses in Metal-Plastic Composites Stiffening Ribs Formed Using the Single Point Incremental Forming Method. Materials 2022, 15, 8252. [Google Scholar] [CrossRef] [PubMed]
- Trzepieciński, T.; Kubit, A.; Slota, J. Assessment of the Tribological Properties of the Steel/Polymer/Steel Sandwich Material LITECOR. Lubricants 2022, 10, 99. [Google Scholar] [CrossRef]
- Kubit, A.; Korzeniowski, M.; Bobusia, M.; Ochałek, K.; Slota, J. Analysis of the Possibility of Forming Stiffening Ribs in Litecor Metal-Plastic Composite Using the Single Point Incremental Forming Method. Key Eng. Mater. 2022, 926, 802–814. [Google Scholar] [CrossRef]
- Jabłońska, M.; Jurczak, W.; Ozimina, D.; Adamiak, M. Increasing the operational reliability of a ship by using a composite impeller in the event of hydrophore pump failure. Eksploat. Niezawodn.-Maint. Reliab. 2023, 25, 18. [Google Scholar] [CrossRef]
- Nasab, F.F.; Geijselaers, H.J.M.; Baran, I.; Akkerman, R.; De Boer, A. Optimization of the Interacting Stiffened Skins and Ribs Made of Composite Materials. AIAA J. 2020, 58, 1836–1850. [Google Scholar] [CrossRef]
- Ham, M.; Jeswiet, J. Single point incremental forming. Int. J. Mater. Prod. Technol. 2008, 32, 374. [Google Scholar] [CrossRef]
- Yannick, C.; Sanne, V.; Hans, V.; Jos, V.S.; Joost, D. Non-rigid Registration: A Powerful Morphing Tool in SPIF Process Planning. Procedia Eng. 2017, 183, 155–160. [Google Scholar] [CrossRef]
- Behera, A.K.; Lauwers, B.; Duflou, J.R. Tool path generation framework for accurate manufacture of complex 3D sheet metal parts using single point incremental forming. Comput. Ind. 2014, 65, 563–584. [Google Scholar] [CrossRef]
- Basak, S.; Prasad, K.S.; Mehto, A.; Bagchi, J.; Ganesh, Y.S.; Mohanty, S.; Sidpara, A.M.; Panda, S.K. Parameter optimization and texture evolution in single point incremental sheet forming process. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2020, 234, 126–139. [Google Scholar] [CrossRef]
- Jung, K.-S.; Yu, J.-H.; Chung, W.-J.; Lee, C.-W. Tool Path Design of the Counter Single Point Incremental Forming Process to Decrease Shape Error. Materials 2020, 13, 4719. [Google Scholar] [CrossRef] [PubMed]
- Najm, S.M.; Paniti, I.; Trzepieciński, T.; Nama, S.A.; Viharos, Z.J.; Jacso, A. Parametric Effects of Single Point Incremental Forming on Hardness of AA1100 Aluminium Alloy Sheets. Materials 2021, 14, 7263. [Google Scholar] [CrossRef]
- Kubit, A.; Trzepieciński, T.; Krasowski, B.; Slota, J.; Spišák, E. Strength Analysis of a Rib-Stiffened GLARE-Based Thin-Walled Structure. Materials 2020, 13, 2929. [Google Scholar] [CrossRef]
- Akkerman, R.; Bouwman, M.; Wijskamp, S. Analysis of the Thermoplastic Composite Overmolding Process: Interface Strength. Front. Mater. 2020, 7, 27. [Google Scholar] [CrossRef]
- Buffa, G.; Campanella, D.; Fratini, L. On the improvement of material formability in SPIF operation through tool stirring action. Int. J. Adv. Manuf. Technol. 2013, 66, 1343–1351. [Google Scholar] [CrossRef]
- Hagan, E.; Jeswiet, J. Analysis of surface roughness for parts formed by computer numerical controlled incremental forming. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2004, 218, 1307–1312. [Google Scholar] [CrossRef]
- Hussain, G.; Gao, L.; Zhang, Z.Y. Formability evaluation of a pure titanium sheet in the cold incremental forming process. Int. J. Adv. Manuf. Technol. 2008, 37, 920–926. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Maneesh, K.; Reddy, N.V.; Cao, J. Formability and Surface Finish Studies in Single Point Incremental Forming. J. Manuf. Sci. Eng. 2011, 133, 061020. [Google Scholar] [CrossRef]
- Trzepieciński, T.; Kubit, A.; Dzierwa, A.; Krasowski, B.; Jurczak, W. Surface Finish Analysis in Single Point Incremental Sheet Forming of Rib-Stiffened 2024-T3 and 7075-T6 Alclad Aluminium Alloy Panels. Materials 2021, 14, 1640. [Google Scholar] [CrossRef] [PubMed]
- Rattanachan, K.; Chungchoo, C. The Effected of Single Point Incremental Forming Process Parameters on the Formed Part Surface Roughness. Adv. Mater. Res. 2014, 979, 335–338. [Google Scholar] [CrossRef]
- Şen, N.; Şirin, Ş.; Kıvak, T.; Civek, T.; Seçgin, Ö. A new lubrication approach in the SPIF process: Evaluation of the applicability and tribological performance of MQL. Tribol. Int. 2022, 171, 107546. [Google Scholar] [CrossRef]
- Trzepieciński, T.; Szpunar, M.; Dzierwa, A.; Żaba, K. Investigation of Surface Roughness in Incremental Sheet Forming of Conical Drawpieces from Pure Titanium Sheets. Materials 2022, 15, 4278. [Google Scholar] [CrossRef]
- Marinello, F.; Pezzuolo, A. Application of ISO 25178 standard for multiscale 3D parametric assessment of surface topographies. IOP Conf. Ser. Earth Environ. Sci. 2019, 275, 012011. [Google Scholar] [CrossRef]
- Slota, J.; Kubit, A.; Trzepieciński, T.; Krasowski, B.; Varga, J. Ultimate Load-Carrying Ability of Rib-Stiffened 2024-T3 and 7075-T6 Aluminium Alloy Panels under Axial Compression. Materials 2021, 14, 1176. [Google Scholar] [CrossRef]
- Krasowski, B.; Kubit, A.; Trzepieciński, T.; Slota, J. Experimental Analysis of Single Point Incremental Forming of Truncated Cones in DC04 Steel Sheet. Adv. Mater. Sci. 2020, 20, 5–15. [Google Scholar] [CrossRef]
- Podulka, P. Roughness Evaluation of Burnished Topography with a Precise Definition of the S-L Surface. Appl. Sci. 2022, 12, 12788. [Google Scholar] [CrossRef]
- Podulka, P. Resolving Selected Problems in Surface Topography Analysis by Application of the Autocorrelation Function. Coatings 2022, 13, 74. [Google Scholar] [CrossRef]
- Podulka, P. Feature-Based Characterisation of Turned Surface Topography with Suppression of High-Frequency Measurement Errors. Sensors 2022, 22, 9622. [Google Scholar] [CrossRef] [PubMed]
- Kundrak, J.; Nagy, A.; Markopoulos, A.P.; Karkalos, N.E. Investigation of surface roughness on face milled parts with round insert in planes parallel to the feed at various cutting speeds. Cut. Tools Technol. Syst. 2019, 91, 87–96. [Google Scholar] [CrossRef]
- Molnár, V. Minimization Method for 3D Surface Roughness Evaluation Area. Machines 2021, 9, 192. [Google Scholar] [CrossRef]
Properties | Value |
---|---|
Ultimate Tensile Strength | 190–240 MPa |
Yield Strength | 120–180 MPa |
Elongation | 28% |
Parameter | Equation | Description |
---|---|---|
Sa | Arithmetical mean height | |
Sq | Root mean square height | |
Ssk | Skewness | |
Sku | Kurtosis | |
Sp | Maximum peak height | |
Sv | Maximum pit height | |
Sz | Sz = Sp + Sv | Maximum height |
# | SPIF Parameter | Roughness Parameter | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
F (mm/min) | n (rpm) | Sz (μm) | Sp (μm) | Str | Sv (μm) | Sq | Sku | Ssk | Sa (μm) | |
Case A | 300 | 300 | 32.9 | 18.1 | 0.159 | 14.7 | 4.15 | 2.61 | −0.0439 | 3.37 |
Case B | 1500 | 3000 | 45.7 | 36 | 0.101 | 9.74 | 3.28 | 2.62 | 0.205 | 2.69 |
Case C | 1500 | 300 | 18.7 | 8.3 | 0.093 | 10.4 | 2.36 | 2.88 | −0.193 | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Sabur, R.; Kubit, A.; Khalaf, H.I.; Jurczak, W.; Dzierwa, A.; Korzeniowski, M. Analysis of Surface Texture and Roughness in Composites Stiffening Ribs Formed by SPIF Process. Materials 2023, 16, 2901. https://doi.org/10.3390/ma16072901
Al-Sabur R, Kubit A, Khalaf HI, Jurczak W, Dzierwa A, Korzeniowski M. Analysis of Surface Texture and Roughness in Composites Stiffening Ribs Formed by SPIF Process. Materials. 2023; 16(7):2901. https://doi.org/10.3390/ma16072901
Chicago/Turabian StyleAl-Sabur, Raheem, Andrzej Kubit, Hassanein I. Khalaf, Wojciech Jurczak, Andrzej Dzierwa, and Marcin Korzeniowski. 2023. "Analysis of Surface Texture and Roughness in Composites Stiffening Ribs Formed by SPIF Process" Materials 16, no. 7: 2901. https://doi.org/10.3390/ma16072901
APA StyleAl-Sabur, R., Kubit, A., Khalaf, H. I., Jurczak, W., Dzierwa, A., & Korzeniowski, M. (2023). Analysis of Surface Texture and Roughness in Composites Stiffening Ribs Formed by SPIF Process. Materials, 16(7), 2901. https://doi.org/10.3390/ma16072901