Analysis of Surface Texture and Roughness in Composites Stiffening Ribs Formed by SPIF Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Incremental Forming
2.2. Roughness Parameters
3. Results and Discussions
4. Conclusions
- The surfaace roughness of the stiffened ribs formed in Litecor® panel sheets highly depends on the SPIF process parameters, including (f) and (N).
- Case B, which had the highest (f) and (N), resulted in the smoothest surface texture with the lowest maximum height (Sz) value.
- Case A, which had the lowest (f) and (N), resulted in a rougher surface texture with a higher maximum height (Sz) value than case B.
- Case C, which had a low (N) but a high (f), resulted in a surface texture with a high maximum height (Sz) value and a more complex contour plot than cases A and B.
- The contour plots generated from the topography analyses provided a good visual representation of the surface texture and roughness of the stiffened ribs formed in Litecor® panel sheets, allowing for a more comprehensive analysis of the SPIF process parameters.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramnath, B.V.; Alagarraja, K.; Elanchezhian, C. Review on Sandwich Composite and their Applications. Mater. Today Proc. 2019, 16, 859–864. [Google Scholar] [CrossRef]
- Elghandour, E.; Elzayady, N. Comparison between honeycomb and composite corrugated cores in sandwich panels under compression loading. Int. J. Sustain. Mater. Struct. Syst. 2021, 5, 179. [Google Scholar] [CrossRef]
- Ulker, O. Surface Roughness of Composite Panels as a Quality Control Tool. Materials 2018, 11, 407. [Google Scholar] [CrossRef] [Green Version]
- Carey, J.P.; Melenka, G.W.; Hunt, A.; Cheung, B.; Ivey, M.; Ayranci, C. Braided composites in aerospace engineering. In Advanced Composite Materials for Aerospace Engineering; Elsevier: Amsterdam, The Netherlands, 2016; pp. 175–212. [Google Scholar] [CrossRef]
- Castanie, B.; Bouvet, C.; Ginot, M. Review of composite sandwich structure in aeronautic applications. Compos. Part C Open Access 2020, 1, 100004. [Google Scholar] [CrossRef]
- Kubit, A.; Al-Sabur, R.; Gradzik, A.; Ochał, K.; Slota, J.; Korzeniowski, M. Investigating Residual Stresses in Metal-Plastic Composites Stiffening Ribs Formed Using the Single Point Incremental Forming Method. Materials 2022, 15, 8252. [Google Scholar] [CrossRef] [PubMed]
- Trzepieciński, T.; Kubit, A.; Slota, J. Assessment of the Tribological Properties of the Steel/Polymer/Steel Sandwich Material LITECOR. Lubricants 2022, 10, 99. [Google Scholar] [CrossRef]
- Kubit, A.; Korzeniowski, M.; Bobusia, M.; Ochałek, K.; Slota, J. Analysis of the Possibility of Forming Stiffening Ribs in Litecor Metal-Plastic Composite Using the Single Point Incremental Forming Method. Key Eng. Mater. 2022, 926, 802–814. [Google Scholar] [CrossRef]
- Jabłońska, M.; Jurczak, W.; Ozimina, D.; Adamiak, M. Increasing the operational reliability of a ship by using a composite impeller in the event of hydrophore pump failure. Eksploat. Niezawodn.-Maint. Reliab. 2023, 25, 18. [Google Scholar] [CrossRef]
- Nasab, F.F.; Geijselaers, H.J.M.; Baran, I.; Akkerman, R.; De Boer, A. Optimization of the Interacting Stiffened Skins and Ribs Made of Composite Materials. AIAA J. 2020, 58, 1836–1850. [Google Scholar] [CrossRef]
- Ham, M.; Jeswiet, J. Single point incremental forming. Int. J. Mater. Prod. Technol. 2008, 32, 374. [Google Scholar] [CrossRef]
- Yannick, C.; Sanne, V.; Hans, V.; Jos, V.S.; Joost, D. Non-rigid Registration: A Powerful Morphing Tool in SPIF Process Planning. Procedia Eng. 2017, 183, 155–160. [Google Scholar] [CrossRef]
- Behera, A.K.; Lauwers, B.; Duflou, J.R. Tool path generation framework for accurate manufacture of complex 3D sheet metal parts using single point incremental forming. Comput. Ind. 2014, 65, 563–584. [Google Scholar] [CrossRef]
- Basak, S.; Prasad, K.S.; Mehto, A.; Bagchi, J.; Ganesh, Y.S.; Mohanty, S.; Sidpara, A.M.; Panda, S.K. Parameter optimization and texture evolution in single point incremental sheet forming process. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2020, 234, 126–139. [Google Scholar] [CrossRef]
- Jung, K.-S.; Yu, J.-H.; Chung, W.-J.; Lee, C.-W. Tool Path Design of the Counter Single Point Incremental Forming Process to Decrease Shape Error. Materials 2020, 13, 4719. [Google Scholar] [CrossRef] [PubMed]
- Najm, S.M.; Paniti, I.; Trzepieciński, T.; Nama, S.A.; Viharos, Z.J.; Jacso, A. Parametric Effects of Single Point Incremental Forming on Hardness of AA1100 Aluminium Alloy Sheets. Materials 2021, 14, 7263. [Google Scholar] [CrossRef]
- Kubit, A.; Trzepieciński, T.; Krasowski, B.; Slota, J.; Spišák, E. Strength Analysis of a Rib-Stiffened GLARE-Based Thin-Walled Structure. Materials 2020, 13, 2929. [Google Scholar] [CrossRef]
- Akkerman, R.; Bouwman, M.; Wijskamp, S. Analysis of the Thermoplastic Composite Overmolding Process: Interface Strength. Front. Mater. 2020, 7, 27. [Google Scholar] [CrossRef]
- Buffa, G.; Campanella, D.; Fratini, L. On the improvement of material formability in SPIF operation through tool stirring action. Int. J. Adv. Manuf. Technol. 2013, 66, 1343–1351. [Google Scholar] [CrossRef]
- Hagan, E.; Jeswiet, J. Analysis of surface roughness for parts formed by computer numerical controlled incremental forming. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2004, 218, 1307–1312. [Google Scholar] [CrossRef]
- Hussain, G.; Gao, L.; Zhang, Z.Y. Formability evaluation of a pure titanium sheet in the cold incremental forming process. Int. J. Adv. Manuf. Technol. 2008, 37, 920–926. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Maneesh, K.; Reddy, N.V.; Cao, J. Formability and Surface Finish Studies in Single Point Incremental Forming. J. Manuf. Sci. Eng. 2011, 133, 061020. [Google Scholar] [CrossRef]
- Trzepieciński, T.; Kubit, A.; Dzierwa, A.; Krasowski, B.; Jurczak, W. Surface Finish Analysis in Single Point Incremental Sheet Forming of Rib-Stiffened 2024-T3 and 7075-T6 Alclad Aluminium Alloy Panels. Materials 2021, 14, 1640. [Google Scholar] [CrossRef] [PubMed]
- Rattanachan, K.; Chungchoo, C. The Effected of Single Point Incremental Forming Process Parameters on the Formed Part Surface Roughness. Adv. Mater. Res. 2014, 979, 335–338. [Google Scholar] [CrossRef]
- Şen, N.; Şirin, Ş.; Kıvak, T.; Civek, T.; Seçgin, Ö. A new lubrication approach in the SPIF process: Evaluation of the applicability and tribological performance of MQL. Tribol. Int. 2022, 171, 107546. [Google Scholar] [CrossRef]
- Trzepieciński, T.; Szpunar, M.; Dzierwa, A.; Żaba, K. Investigation of Surface Roughness in Incremental Sheet Forming of Conical Drawpieces from Pure Titanium Sheets. Materials 2022, 15, 4278. [Google Scholar] [CrossRef]
- Marinello, F.; Pezzuolo, A. Application of ISO 25178 standard for multiscale 3D parametric assessment of surface topographies. IOP Conf. Ser. Earth Environ. Sci. 2019, 275, 012011. [Google Scholar] [CrossRef]
- Slota, J.; Kubit, A.; Trzepieciński, T.; Krasowski, B.; Varga, J. Ultimate Load-Carrying Ability of Rib-Stiffened 2024-T3 and 7075-T6 Aluminium Alloy Panels under Axial Compression. Materials 2021, 14, 1176. [Google Scholar] [CrossRef]
- Krasowski, B.; Kubit, A.; Trzepieciński, T.; Slota, J. Experimental Analysis of Single Point Incremental Forming of Truncated Cones in DC04 Steel Sheet. Adv. Mater. Sci. 2020, 20, 5–15. [Google Scholar] [CrossRef]
- Podulka, P. Roughness Evaluation of Burnished Topography with a Precise Definition of the S-L Surface. Appl. Sci. 2022, 12, 12788. [Google Scholar] [CrossRef]
- Podulka, P. Resolving Selected Problems in Surface Topography Analysis by Application of the Autocorrelation Function. Coatings 2022, 13, 74. [Google Scholar] [CrossRef]
- Podulka, P. Feature-Based Characterisation of Turned Surface Topography with Suppression of High-Frequency Measurement Errors. Sensors 2022, 22, 9622. [Google Scholar] [CrossRef] [PubMed]
- Kundrak, J.; Nagy, A.; Markopoulos, A.P.; Karkalos, N.E. Investigation of surface roughness on face milled parts with round insert in planes parallel to the feed at various cutting speeds. Cut. Tools Technol. Syst. 2019, 91, 87–96. [Google Scholar] [CrossRef]
- Molnár, V. Minimization Method for 3D Surface Roughness Evaluation Area. Machines 2021, 9, 192. [Google Scholar] [CrossRef]
Properties | Value |
---|---|
Ultimate Tensile Strength | 190–240 MPa |
Yield Strength | 120–180 MPa |
Elongation | 28% |
Parameter | Equation | Description |
---|---|---|
Sa | Arithmetical mean height | |
Sq | Root mean square height | |
Ssk | Skewness | |
Sku | Kurtosis | |
Sp | Maximum peak height | |
Sv | Maximum pit height | |
Sz | Sz = Sp + Sv | Maximum height |
# | SPIF Parameter | Roughness Parameter | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
F (mm/min) | n (rpm) | Sz (μm) | Sp (μm) | Str | Sv (μm) | Sq | Sku | Ssk | Sa (μm) | |
Case A | 300 | 300 | 32.9 | 18.1 | 0.159 | 14.7 | 4.15 | 2.61 | −0.0439 | 3.37 |
Case B | 1500 | 3000 | 45.7 | 36 | 0.101 | 9.74 | 3.28 | 2.62 | 0.205 | 2.69 |
Case C | 1500 | 300 | 18.7 | 8.3 | 0.093 | 10.4 | 2.36 | 2.88 | −0.193 | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Sabur, R.; Kubit, A.; Khalaf, H.I.; Jurczak, W.; Dzierwa, A.; Korzeniowski, M. Analysis of Surface Texture and Roughness in Composites Stiffening Ribs Formed by SPIF Process. Materials 2023, 16, 2901. https://doi.org/10.3390/ma16072901
Al-Sabur R, Kubit A, Khalaf HI, Jurczak W, Dzierwa A, Korzeniowski M. Analysis of Surface Texture and Roughness in Composites Stiffening Ribs Formed by SPIF Process. Materials. 2023; 16(7):2901. https://doi.org/10.3390/ma16072901
Chicago/Turabian StyleAl-Sabur, Raheem, Andrzej Kubit, Hassanein I. Khalaf, Wojciech Jurczak, Andrzej Dzierwa, and Marcin Korzeniowski. 2023. "Analysis of Surface Texture and Roughness in Composites Stiffening Ribs Formed by SPIF Process" Materials 16, no. 7: 2901. https://doi.org/10.3390/ma16072901
APA StyleAl-Sabur, R., Kubit, A., Khalaf, H. I., Jurczak, W., Dzierwa, A., & Korzeniowski, M. (2023). Analysis of Surface Texture and Roughness in Composites Stiffening Ribs Formed by SPIF Process. Materials, 16(7), 2901. https://doi.org/10.3390/ma16072901