Highly Regular LIPSS on Thin Molybdenum Films: Optimization and Generic Criteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Materials
2.3. Regularity Analysis Using the Dispersion of the LIPSS Orientation Angle (DLOA)
3. Results
3.1. Effect of Polarization Orientation
3.2. Effect of Irradiation Spots Overlaps
3.3. Effect of the Scanning Direction
3.4. Analysis of Chemical Composition and Possibility of Film Dewetting
4. Discussion
4.1. Two-Temperature Modeling of a Single-Pulse Action
4.2. Insights from Surface Plasmon Polaritons Theory
4.3. Comment on Other Factors Influencing LIPSS Regularity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AFM | Atomic Force Microscope |
DLOA | Dispersion of the LIPSS Orientation Angle |
FFT | Fast Fourier Transform |
HR-LIPSS | Highly Regular LIPSS |
LIPSS | Laser-induced Periodic Surface Structures |
SEM | Scanning Electron Microscope |
SPP | Surface Plasmon Polaritons |
References
- Reif, J.; Martens, C.; Uhlig, S.; Ratzke, M.; Varlamova, O.; Valette, S.; Benayoun, S. On large area LIPSS coverage by multiple pulses. Appl. Surf. Sci. 2015, 336, 249–254. [Google Scholar] [CrossRef]
- Bonse, J.; Höhm, S.; Kirner, S.V.; Rosenfeld, A.; Krüger, J. Laser-induced periodic surface structures - a scientific evergreen. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 9000615. [Google Scholar] [CrossRef]
- Santagata, A.; Pace, M.L.; Bellucci, A.; Mastellone, M.; Bolli, E.; Valentini, V.; Orlando, S.; Sani, E.; Failla, S.; Sciti, D.; et al. Enhanced and selective absorption of molybdenum nanostructured surfaces for concentrated solar energy applications. Materials 2022, 15, 8333. [Google Scholar] [CrossRef] [PubMed]
- Fauchet, P.M.; Siegman, A.E. Surface ripples on silicon and gallium arsenide under picosecond laser illumination. Appl. Phys. Lett. 1982, 40, 824–826. [Google Scholar] [CrossRef]
- Bolle, M.; Lazare, S. Large scale excimer laser production of submicron periodic structures on polymer surfaces. Appl. Surf. Sci. 1993, 69, 31–37. [Google Scholar] [CrossRef]
- Semaltianos, N.G.; Perrie, W.; French, P.; Sharp, M.; Dearden, G.; Watkins, K.G. Femtosecond laser surface texturing of a nickel-based superalloy. Appl. Surf. Sci. 2008, 255, 2796–2802. [Google Scholar] [CrossRef]
- Le Harzic, R.; Dörr, D.; Sauer, D.; Neumeier, M.; Epple, M.; Zimmermann, H.; Stracke, F. Large-area, uniform, high-spatial-frequency ripples generated on silicon using a nanojoule-femtosecond laser at high repetition rate. Opt. Lett. 2011, 36, 229–231. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Q.; Cao, K.; Chen, T.; Cheng, K.; Zhang, S.; Feng, D.; Jia, T.; Sun, Z.; Qiu, J. Extremely regular periodic surface structures in a large area efficiently induced on silicon by temporally shaped femtosecond laser. Photonics Res. 2021, 9, 839–847. [Google Scholar] [CrossRef]
- Hauschwitz, P.; Jochcová, D.; Jagdheesh, R.; Rostohar, D.; Brajer, J.; Kopeček, J.; Cimrman, M.; Smrž, M.; Mocek, T.; Lucianetti, A. Towards rapid large-scale LIPSS fabrication by 4-beam ps DLIP. Opt. Laser Technol. 2021, 133, 106532. [Google Scholar] [CrossRef]
- Indrišiūnas, S.; Svirplys, E.; Gedvilas, M. Large-area fabrication of LIPSS for wetting control using multi-parallel femtosecond laser processing. Materials 2022, 15, 5534. [Google Scholar] [CrossRef]
- Mezera, M.; Römer, G.R.B.E. Model based optimization of process parameters to produce large homogeneous areas of laser-induced periodic surface structures. Opt. Express 2019, 27, 6012–6029. [Google Scholar] [CrossRef]
- Huang, J.; Liu, Y.; Jin, S.; Wang, Z.; Qi, Y.; Zhang, J.; Wang, K.; Qiu, R. Uniformity Control of Laser-Induced Periodic Surface Structures. Front. Phys. 2022, 10, 932284. [Google Scholar] [CrossRef]
- Öktem, B.; Pavlov, I.; Ilday, S.; Kalaycıoğlu, H.; Rybak, A.; Yavaş, S.; Erdoğan, M.; Ilday, F.Ö. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nat. Photonics 2013, 7, 897–901. [Google Scholar] [CrossRef]
- Ruiz de la Cruz, A.; Lahoz, R.; Siegel, J.; de la Fuente, G.F.; Solis, J. High speed inscription of uniform, large-area laser-induced periodic surface structures in Cr films using a high repetition rate fs laser. Opt. Lett. 2014, 39, 2491–2494. [Google Scholar] [CrossRef] [Green Version]
- Gnilitskyi, I.; Derrien, T.J.Y.; Levy, Y.; Bulgakova, N.M.; Mocek, T.; Orazi, L. High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: Physical origin of regularity. Sci. Rep. 2017, 7, 8485. [Google Scholar] [CrossRef] [Green Version]
- Sikora, A.; Faucon, M.; Gemini, L.; Kling, R.; Mincuzzi, G. LIPSS and DLIP: From hierarchical to mutually interacting, homogeneous, structuring. Appl. Surf. Sci. 2022, 591, 153230. [Google Scholar] [CrossRef]
- Dostovalov, A.V.; Derrien, T.J.Y.; Přeučil, F.; Mocek, T.; Korolkov, V.P.; Babin, S.A.; Bulgakova, N.M. The evidence of the role of surface plasmon polaritons in formation of femtosecond highly-regular laser-induced periodic structures on Cr films. J. Phys. Conf. Ser. 2018, 1092, 012025. [Google Scholar] [CrossRef]
- Xie, H.; Zhao, B.; Cheng, J.; Chamoli, S.K.; Zou, T.; Xin, W.; Yang, J. Super-regular femtosecond laser nanolithography based on dual-interface plasmons coupling. Nanophotonics 2021, 10, 3831–3842. [Google Scholar] [CrossRef]
- Möhl, A.; Kaldun, S.; Kunz, C.; Müller, F.A.; Fuchs, U.; Gräf, S. Tailored focal beam shaping and its application in laser material processing. J. Laser Appl. 2019, 31, 042019. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.H.; Kuo, K.K.; Cheng, C.W. Femtosecond laser-induced periodic surface structures on different tilted metal surfaces. Nanomaterials 2020, 10, 2540. [Google Scholar] [CrossRef]
- San-Blas, A.; Martinez-Calderon, M.; Granados, E.; Gómez-Aranzadi, M.; Rodríguez, A.; Olaizola, S.M. LIPSS manufacturing with regularity control through laser wavefront curvature. Surf. Interfaces 2021, 25, 101205. [Google Scholar] [CrossRef]
- Belousov, D.A.; Bronnikov, K.A.; Okotrub, K.A.; Mikerin, S.L.; Korolkov, V.P.; Terentyev, V.S.; Dostovalov, A.V. Thermochemical laser-induced periodic surface structures formation by femtosecond laser on Hf thin films in air and vacuum. Materials 2021, 14, 6714. [Google Scholar] [CrossRef] [PubMed]
- Bonse, J.; Gräf, S. Ten open questions about laser-induced periodic surface structures. Nanomaterials 2021, 11, 3326. [Google Scholar] [CrossRef] [PubMed]
- Novák, O.; Miura, T.; Smrž, M.; Chyla, M.; Nagisetty, S.S.; Mužík, J.; Linnemann, J.; Turčičová, H.; Jambunathan, V.; Slezák, O.; et al. Status of the high average power diode-pumped solid state laser development at HiLASE. Appl. Sci. 2015, 5, 637–665. [Google Scholar] [CrossRef] [Green Version]
- Smrž, M.; Mužík, J.; Štěpánková, D.; Turčičová, H.; Novák, O.; Chyla, M.; Hauschwitz, P.; Brajer, J.; Kubát, J.; Todorov, F.; et al. Picosecond thin-disk laser platform PERLA for multi-beam micromachining. OSA Contin. 2021, 4, 940–952. [Google Scholar] [CrossRef]
- Istokskaia, V.; Tosca, M.; Giuffrida, L.; Psikal, J.; Grepl, F.; Kantarelou, V.; Stancek, S.; Di Siena, S.; Hadjikyriacou, A.; McIlvenny, A.; et al. A multi-MeV alpha particle source via proton-boron fusion driven by a 10-GW tabletop laser. Commun. Phys. 2023, 6, 27. [Google Scholar] [CrossRef]
- Liu, J.M. Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett. 1982, 7, 196–198. [Google Scholar] [CrossRef]
- Čekada, M.; Radić, N.; Jerčinović, M.; Panjan, M.; Panjan, P.; Drnovšek, A.; Car, T. Growth defects in magnetron sputtered PVD films deposited in UHV environment. Vacuum 2017, 138, 213–217. [Google Scholar] [CrossRef]
- Panjan, P.; Drnovšek, A.; Gselman, P.; Čekada, M.; Panjan, M. Review of growth defects in thin films prepared by PVD techniques. Coatings 2020, 10, 447. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Püspöki, Z.; Storath, M.; Sage, D.; Unser, M. Transforms and operators for directional bioimage analysis: A survey. In Focus on Bio-Image Informatics; De Vos, W.H., Munck, S., Timmermans, J.P., Eds.; Springer: Cham, Switzerland, 2016; Volume 219, pp. 69–93. [Google Scholar] [CrossRef]
- Bischof, J.; Scherer, D.; Herminghaus, S.; Leiderer, P. Dewetting modes of thin metallic films: Nucleation of holes and spinodal dewetting. Phys. Rev. Lett. 1996, 77, 1536–1539. [Google Scholar] [CrossRef] [Green Version]
- Thiele, U.; Velarde, M.G.; Neuffer, K. Dewetting: Film rupture by nucleation in the spinodal regime. Phys. Rev. Lett. 2001, 87, 016104. [Google Scholar] [CrossRef]
- Gedvilas, M.; Voisiat, B.; Račiukaitis, G.; Regelskis, K. Self-organization of thin metal films by irradiation with nanosecond laser pulses. Appl. Surf. Sci. 2009, 255, 9826–9829. [Google Scholar] [CrossRef]
- Zagoranskiy, I.; Lorenz, P.; Ehrhardt, M.; Zimmer, K. Guided self-organization of nanodroplets induced by nanosecond IR laser radiation of molybdenum films on sapphire. Opt. Lasers Eng. 2019, 113, 55–61. [Google Scholar] [CrossRef]
- Ruffino, F.; Grimaldi, M.G. Nanostructuration of thin metal films by pulsed laser irradiations: A review. Nanomaterials 2019, 9, 1133. [Google Scholar] [CrossRef] [Green Version]
- Körner, C.; Mayerhofer, R.; Hartmann, M.; Bergmann, H.W. Physical and material aspects in using visible laser pulses of nanosecond duration for ablation. Appl. Phys. A 1996, 63, 123–131. [Google Scholar] [CrossRef]
- Kakiuchida, H.; Saito, K.K.; Akira, A.J.; Ikushima, J. Precise determination of fictive temperature of silica glass by infrared absorption spectrum. J. Appl. Phys. 2003, 93, 777–779. [Google Scholar] [CrossRef]
- Hlinomaz, K.; Levy, Y.; Derrien, T.J.Y.; Bulgakova, N.M. Modeling thermal response of Mo thin films upon single femtosecond laser irradiation: Dynamics of film melting and substrate softening. Int. J. Heat Mass Transf. 2022, 196, 123292. [Google Scholar] [CrossRef]
- Svensson, J.; Bulgakova, N.M.; Nerushev, O.A.; Campbell, E.E.B. Marangoni effect in SiO2 during field-directed chemical vapor deposition growth of carbon nanotubes. Phys. Rev. B 2006, 73, 205413. [Google Scholar] [CrossRef]
- Hlinomaz, K.; Levy, Y.; Derrien, T.J.Y.; Bulgakova, N.M. Modeling the melting threshold of Mo films upon ultrashort laser irradiation. MM Sci. J. 2019, 2019, 85–3593. [Google Scholar] [CrossRef]
- Wu, C.; Zhigilei, L.V. Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations. Appl. Phys. A 2014, 114, 11–32. [Google Scholar] [CrossRef]
- Emelyanov, A.N.; Shakhray, D.V.; Golyshev, A.A. Study of near-critical states of liquid-vapor phase transition of magnesium. J. Phys. Conf. Ser. 2015, 653, 012082. [Google Scholar] [CrossRef]
- Miotello, A.; Kelly, R. Laser-induced phase explosion: New physical problems when a condensed phase approaches the thermodynamic critical temperature. Appl. Phys. A 1999, 69, S67–S73. [Google Scholar] [CrossRef]
- Sipe, J.E.; Young, J.F.; Preston, J.S.; van Driel, H.M. Laser-induced periodic surface structure. I. Theory. Phys. Rev. B 1983, 27, 1141–1154. [Google Scholar] [CrossRef]
- Derrien, T.J.Y.; Sarnet, T.; Sentis, M.; Itina, T.E. Application of a two-temperature model for the investigation of the periodic structure formation on Si surface in femtosecond laser interactions. J. Optoelectron. Adv. Mater. 2010, 12, 610–615. [Google Scholar]
- Levy, Y.; Derrien, T.J.Y.; Bulgakova, N.M.; Gurevich, E.L.; Mocek, T. Relaxation dynamics of femtosecond-laser-induced temperature modulation on the surfaces of metals and semiconductors. Appl. Surf. Sci. 2016, 374, 157–164. [Google Scholar] [CrossRef]
- Shugaev, M.V.; Gnilitskyi, I.; Bulgakova, N.M.; Zhigilei, L.V. Mechanism of single-pulse ablative generation of laser-induced periodic surface structures. Phys. Rev. B 2017, 96, 205429. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Lu, Q.; Zhang, P.; Yan, H.; Shi, H.; Yu, Z.; Sun, T.; Luo, Z.; Tian, Y. A critical review on the simulation of ultra-short pulse laser-metal interactions based on a two-temperature model (TTM). Opt. Laser Technol. 2023, 159, 109001. [Google Scholar] [CrossRef]
- Oh, H.; Lee, J.; Seo, M.; Baek, I.U.; Byun, J.Y.; Lee, M. Laser-induced dewetting of metal thin films for template-free plasmonic color printing. ACS Appl. Mater. Interfaces 2018, 10, 38368–38375. [Google Scholar] [CrossRef]
- Dasbach, M.; Reinhardt, H.M.; Hampp, N.A. Formation of highly ordered platinum nanowire arrays on silicon via laser-induced self-organization. Nanomaterials 2019, 9, 1031. [Google Scholar] [CrossRef] [Green Version]
- Maragkaki, S.; Derrien, T.J.Y.; Levy, Y.; Bulgakova, N.M.; Ostendorf, A.; Gurevich, E.L. Wavelength dependence of picosecond laser-induced periodic surface structures on copper. Appl. Surf. Sci. 2017, 417, 88–92. [Google Scholar] [CrossRef] [Green Version]
- Morawetz, K.; Trinschek, S.; Gurevich, E.L. Interplay of viscosity and surface tension for ripple formation by laser melting. Phys. Rev. B 2022, 105, 035415. [Google Scholar] [CrossRef]
- Derrien, T.J.Y.; Krüger, J.; Bonse, J. Properties of surface plasmon polaritons on lossy materials: Lifetimes, periods and excitation conditions. J. Opt. 2016, 18, 115007. [Google Scholar] [CrossRef] [Green Version]
- Dostovalov, A.V.; Derrien, T.J.Y.; Lizunov, S.A.; Přeučil, F.; Okotrub, K.A.; Mocek, T.; Korolkov, V.P.; Babin, S.A.; Bulgakova, N.M. LIPSS on thin metallic films: New insights from multiplicity of laser-excited electromagnetic modes and efficiency of metal oxidation. Appl. Surf. Sci. 2019, 491, 650–658. [Google Scholar] [CrossRef] [Green Version]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Huang, M.; Zhao, F.; Cheng, Y.; Xu, N.; Xu, Z. Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser. ACS Nano 2009, 3, 4062–4070. [Google Scholar] [CrossRef]
- Huang, M.; Cheng, Y.; Zhao, F.; Xu, Z. The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale. Ann. Phys. 2013, 525, 74–86. [Google Scholar] [CrossRef]
- Rudenko, A.; Mauclair, C.; Garrelie, F.; Stoian, R.; Colombier, J.P. Amplification and regulation of periodic nanostructures in multipulse ultrashort laser-induced surface evolution by electromagnetic-hydrodynamic simulations. Phys. Rev. B 2019, 99, 235412. [Google Scholar] [CrossRef]
- Vorobyev, A.Y.; Guo, C. Femtosecond laser-induced periodic surface structure formation on tungsten. J. Appl. Phys. 2008, 104, 063523. [Google Scholar] [CrossRef]
- Zhao, Q.Z.; Malzer, S.; Wang, L.J. Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses. Opt. Lett. 2007, 32, 1932–1934. [Google Scholar] [CrossRef]
Series of Tests | [%] | [%] | [J/cm] | Angle between Polarization and Scanning Direction [°] | Uni- or Bi-Directional Scanning | Smallest DLOA in the Series [°] |
---|---|---|---|---|---|---|
Regime 1, Section 3.1 | 92.3 | 75.4 | 0.266 | 0, 12, 90 | uni-directional | |
Regime 2, Section 3.2 | 92.3–95.7 | 63.1–75.4 | 0.266 | 0 | uni-directional | |
Regime 3, Section 3.3 | 95.1 | 66.2 | 0.242–0.289 | 0 | uni- and bi-directional |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sládek, J.; Hlinomaz, K.; Mirza, I.; Levy, Y.; Derrien, T.J.-Y.; Cimrman, M.; Nagisetty, S.S.; Čermák, J.; Stuchlíková, T.H.; Stuchlík, J.; et al. Highly Regular LIPSS on Thin Molybdenum Films: Optimization and Generic Criteria. Materials 2023, 16, 2883. https://doi.org/10.3390/ma16072883
Sládek J, Hlinomaz K, Mirza I, Levy Y, Derrien TJ-Y, Cimrman M, Nagisetty SS, Čermák J, Stuchlíková TH, Stuchlík J, et al. Highly Regular LIPSS on Thin Molybdenum Films: Optimization and Generic Criteria. Materials. 2023; 16(7):2883. https://doi.org/10.3390/ma16072883
Chicago/Turabian StyleSládek, Juraj, Kryštof Hlinomaz, Inam Mirza, Yoann Levy, Thibault J.-Y. Derrien, Martin Cimrman, Siva S. Nagisetty, Jan Čermák, The Ha Stuchlíková, Jiří Stuchlík, and et al. 2023. "Highly Regular LIPSS on Thin Molybdenum Films: Optimization and Generic Criteria" Materials 16, no. 7: 2883. https://doi.org/10.3390/ma16072883