Effect of Various Dynamic Shear Rheometer Testing Methods on the Measured Rheological Properties of Bitumen
Abstract
1. Introduction
2. Materials and Methods
2.1. Tested Materials
2.2. Testing Plan
2.3. Design of Experiment
3. Results and Discussion
3.1. Evaluation of Main and Interaction Effects
- Trim(G*) = ((G*8 − G*7) + (G*4 − G*3) + (G*6 − G*5) + (G*2 − G*1))/4
- BT (G*) = ((G*3 − G*1) + (G*4 − G*2) + (G*7 − G*5) + (G*8 − G*6))/4
- HT (G*) = ((G*8 − G*4) + (G*7 − G*3) + (G*6 − G*2) + (G*5 − G*1))/4
- Trim:HT (G*) = (G*1 + G*3 + G*6 + G*8)/4 − (G*2 + G*4 + G*5 + G*7)/4
- Trim:BT (G*) = (G*8 + G*5 + G*4 + G*1)/4 − (G*7 + G*6 + G*3 + G*2)/4
- BT:HT(G*) = (G*8 + G*7 + G*2 + G*1)/4 − (G*3 + G*4+ G*5 + G*6)/4
- Trim:BT:HT (G*) = (G*8 + G*5 + G*3 + G*2)/4 − (G*7 + G*6+ G*4 + G*1)/4
3.2. Master Curves and 2S2P1D Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yadykova, A.Y.; Strelets, L.A.; Ilyin, S.O. Infrared Spectral Classification of Natural Bitumens for Their Rheological and Thermophysical Characterization. Molecules 2023, 28, 2065. [Google Scholar] [CrossRef] [PubMed]
- Halstead, W.J. Relation of Asphalt Chemistry to Physical Properties and Specifications; Virginia Transportation Research Council: Charlottesville, VA, USA, 1984. [Google Scholar]
- Zakar, P. Asphalt; Chemical Publishing Company: Gloucester, MA, USA, 1971. [Google Scholar]
- EN1426; Bitumen and Bituminous Binders—Determination of Needle Penetration. European Committee for Standardization: Brussels, Belgium, 2015.
- EN1427; Bitumen and Bituminous Binders—Determination of the Softening Point—Ring and Ball Method. European Committee for Standardization: Brussels, Belgium, 2015.
- Airey, G.D. Rheological properties of styrene butadiene styrene polymer modified road bitumens. Fuel 2003, 82, 1709–1719. [Google Scholar] [CrossRef]
- Soenen, H.; Lu, X.; Redelius, P. The morphology of bitumen-SBS blends by UV microscopy: An evaluation of preparation methods. Road Mater. Pavement Des. 2008, 9, 97–110. [Google Scholar] [CrossRef]
- Zhu, J.; Balieu, R.; Lu, X.; Kringos, N. Numerical investigation on phase separation in polymer-modified bitumen: Effect of thermal condition. J. Mater. Sci. 2017, 52, 6525–6541. [Google Scholar] [CrossRef]
- EN14770; Bitumen and Bituminous Binders—Determination of Complex Shear Modulus and Phase Angle—Dynamic Shear Rheometer (dsr). European Committee for Standardization (CEN): Brussels Belgium, 2012.
- Airey, G.D.; Rahimzadeh, B.; Collop, A.C. Linear viscoelastic limits of bituminous binders. Asph. Paving Technol. 2002, 71, 89–115. [Google Scholar]
- Divya, P.; Krishnan, J.M. How to consistently collect rheological data for bitumen in a Dynamic Shear Rheometer? SN Appl. Sci. 2019, 1, 1–5. [Google Scholar] [CrossRef]
- Airey, G.; Hunter, A.; Rahimzadeh, B. Sample Preparation Methods, Geometry and Temperature Control for Dynamic Shear Rheometers. Bearing Capacity of Roads, Railways and Airfields; CRC Press: Boca Raton, FL, USA, 2002; pp. 787–797. [Google Scholar]
- Liu, Q.; Wu, J.; Qu, X.; Wang, C.; Oeser, M. Investigation of bitumen rheological properties measured at different rheometer gap sizes. Constr. Build. Mater. 2020, 265, 120287. [Google Scholar] [CrossRef]
- Singh, B.; Saboo, N.; Kumar, P. (Eds.) Effect of spindle diameter and plate gap on the rheological properties of asphalt binders. In Functional Pavement Design, Proceedings of the 4th Chinese-European Workshop on Functional Pavement Design (4th CEW 2016), Delft, The Netherlands, 29 June–1 July 2016; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Wang, D.; Cannone Falchetto, A.; Alisov, A.; Schrader, J.; Riccardi, C.; Wistuba, M.P. An alternative experimental method for measuring the low temperature rheological properties of asphalt binder by using 4mm parallel plates on dynamic shear rheometer. Transp. Res. Rec. 2019, 2673, 427–438. [Google Scholar] [CrossRef]
- Zhai, H.; Bahia, H.U.; Erickson, S. Effect of film thickness on rheological behavior of asphalt binders. Transp. Res. Rec. 2000, 1728, 7–14. [Google Scholar] [CrossRef]
- Soenen, H.; De Visscher, J.; Vanelstraete, A.; Redelius, P. The influence of thermal history on binder rutting indicators. Road Mater. Pavement Des. 2005, 6, 217–238. [Google Scholar] [CrossRef]
- Mouillet, V., Lapalu, L., Planche, J., Durrieu, F., Eds.; Rheological analysis of bitumens by dynamic shear rheometer: Effect of the thermal history on the results. In Proceedings of the 3rd Eurasphalt and Eurobitume Congress Held Vienna, Vienna, Austria, 12–14 May 2004. [Google Scholar]
- Eckmann, B.; Largeaud, S.; Chabert, D.; Durand, G.; Robert, M.; Van Rooijen, R.; Chailleux, E.; Mouillet, V.; Soenen, H.; Clavel, N.; et al. Measuring the rheological properties of bituminous binders final results from the round robin test of the BNPÉ/P04/GE1 Working Group (France). In Proceedings of the 5th Eurasphalt & Eurobitume Congress, Istanbu, Turkey, 13–15 June 2012. [Google Scholar]
- Laukkanen, O.-V. Small-diameter parallel plate rheometry: A simple technique for measuring rheological properties of glass-forming liquids in shear. Rheol. Acta 2017, 56, 661–671. [Google Scholar] [CrossRef]
- Alisov, A. Typisierung von Bitumen Mittels Instationärer Oszillationsrheometrie; ISBS, Institut für Straßenwesen: Braunschweig, Germany, 2017. [Google Scholar]
- Box, G.E.; Hunter, W.H.; Hunter, S. Statistics for Experimenters; John Wiley & Sons: New York, NY, USA, 1978. [Google Scholar]
- Olard, F.; Di Benedetto, H. General “2S2P1D” Model and Relation Between the Linear Viscoelastic Behaviours of Bituminous Binders and Mixes. Road Mater. Pavement Des. 2003, 4, 185–224. [Google Scholar]
- Delaporte, B.; Di Benedetto, H.; Chaverot, P.; Gauthier, G. Linear viscoelastic properties of bituminous materials: From binders to mastics (with discussion). J. Assoc. Asph. Paving Technol. 2007, 76, 455–494. [Google Scholar]
- Benedetto, H.D.; Delaporte, B.; Sauzéat, C. Three-dimensional linear behavior of bituminous materials: Experiments and modeling. Int. J. Geomech. 2007, 7, 149–157. [Google Scholar] [CrossRef]
- Ferry, J.D. Viscoelastic Properties of Polymers; John Wiley & Sons: Hoboken, NJ, USA, 1980. [Google Scholar]
- Daniel, C. Use of half-normal plots in interpreting factorial two-level experiments. Technometrics 1959, 1, 311–341. [Google Scholar] [CrossRef]
- Ediger, M.; Lutz, T.; He, Y. Dynamics in glass-forming mixtures: Comparison of behavior of polymeric and non-polymeric components. J. Non-Cryst. Solids 2006, 352, 4718–4723. [Google Scholar] [CrossRef]
- Yusoff, N.I.M.; Mounier, D.; Marc-Stéphane, G.; Rosli Hainin, M.; Airey, G.D.; Di Benedetto, H. Modelling the rheological properties of bituminous binders using the 2S2P1D Model. Constr. Build. Mater. 2013, 38, 395–406. [Google Scholar] [CrossRef]
- Lesueur, D.; Gerard, J.F.; Claudy, P.; Letoffe, J.M.; Planche, J.P.; Martin, D. A structure—related model to describe asphalt linear viscoelasticity. J. Rheol. 1996, 40, 813–836. [Google Scholar] [CrossRef]
- López-Paz, J.; Gracia-Fernández, C.; Gómez-Barreiro, S.; López-Beceiro, J.; Nebreda, J.; Artiaga, R. Study of bitumen crystallization by temperature-modulated differential scanning calorimetry and rheology. J. Mater. Res. 2012, 27, 1410–1416. [Google Scholar] [CrossRef]
- Airey, G.D. Use of black diagrams to identify inconsistencies in rheological data. Road Mater. Pavement Des. 2002, 3, 403–424. [Google Scholar] [CrossRef]
Sample ID | PEN (0.1 mm) at 25 °C EN 1426 | SP (°C) EN 1427 | Density at 25 °C kg/m3 |
---|---|---|---|
50/70 | 61 | 48.4 | 1030 |
70/100 | 77 | 46.0 | 1022 |
160/220_I | 160 | 41.2 | 1000 |
160/220_II | 161 | 39.5 | 1013 |
Standard Order | Randomized Run Order | Trimming State Trim | Bonding Temp. °C BT | Heating Temp. °C HT |
---|---|---|---|---|
1 | 6 and 13 | Yes (−) | SP (−) | SP + 80 (−) |
2 | 2 and 4 | No (+) | SP (−) | SP + 80 (−) |
3 | 1 and 16 | Yes (−) | SP + 25 (+) | SP + 80 (−) |
4 | 5 and 10 | No (+) | SP + 25 (+) | SP + 80 (−) |
5 | 8 and 12 | Yes (−) | SP (−) | SP + 100 (+) |
6 | 9 and 14 | No (+) | SP (−) | SP + 100 (+) |
7 | 3 and 11 | Yes (−) | SP + 25 (+) | SP + 100 (+) |
8 | 7 and 15 | No (+) | SP + 25 (+) | SP + 100 (+) |
Result from 8 Runs | Average of Duplicate (kPa) | Estimated Variance: (Diff. of Duplicate)2/2 |
---|---|---|
G*6 and G*13 | G*1 = (G*6 + G*13)/2 = 3658.2 | (G*6 − G*13)2/2 = (152.7)2/2 |
G*2 and G*4 | G*2 = (G*2 + G*4)/2 = 3313.1 | (G*2 − G*4)2/2 = (419)2/2 |
G*1 and G*16 | G*3 = (G*1 + G*16)/2 = 3383.4 | (G*1 − G*16)2/2 = (99.3)2/2 |
G*5 and G*10 | G*4 = (G*5 + G*10)/2 = 3475.7 | (G*5 − G*10)2/2 = (187)2/2 |
G*8 and G*12 | G*5 = (G*8 + G*12)/2 = 3825.7 | (G*8 − G*12)2/2 = (78.1)2/2 |
G*9 and G*14 | G*6 = (G*9 + G*14)/2 = 3774.5 | (G*9 − G*14)2/2 = (71.9)2/2 |
G*3 and G*11 | G*7 = (G*3 + G*11)/2 = 3615 | (G*3 − G*11)2/2 = (0.4)2/2 |
G*7 and G*15 | G*8 = (G*7 + G*15)/2 = 3687.3 | (G*7 − G*15)2/2 = (3.7)2/2 |
Average of the Estimated Variance of 8 observations: | 15,937 |
Factors Effect ± Standard Error | Average |
---|---|
Main Effects | |
Trim | −58 ± 63 |
BT | −103 ± 63 |
HT | 268 ± 63 |
Two-factor interactions | |
Trim:BT | 140 ± 63 |
Trim:HT | 68 ± 63 |
BT:HT | −46 ± 63 |
Three-factor interaction | |
Trim:BT:HT | −78 ± 63 |
Factor | DF | Sum of Square | Mean Square | F Value | p-Value (Prob > F) |
---|---|---|---|---|---|
Trim | 1 | 13,415 | 13,415 | 0.84 | 0.39 |
BT | 1 | 42,035 | 42,035 | 2.64 | 0.14 |
HT | 1 | 287,323 | 287,323 | 18.03 | 0.00 |
Trim:BT | 1 | 78,638 | 78,638 | 4.93 | 0.06 |
Trim:HT | 1 | 18,735 | 18,735 | 1.18 | 0.31 |
BT:HT | 1 | 8616 | 8616 | 0.54 | 0.48 |
Trim:BT:HT | 1 | 24,641 | 24,641 | 1.55 | 0.25 |
Residuals | 8 | 127,495 | 15,937 | ||
Total | 15 | 600,898 |
Temp °C | Trim | BT | HT | Trim:HT | Trim:BT | BT:HT | HT:BT:Trim | SE/avg G* |
---|---|---|---|---|---|---|---|---|
G* (ω = 10 rad/s) | ||||||||
0 | 0.13 | −0.09 | 0.03 | 0.01 | −0.04 | 0.03 | 0.02 | 0.02 |
10 | 0.13 | −0.08 | 0.03 | 0.02 | −0.04 | 0.03 | 0.02 | 0.02 |
20 | 0.14 | −0.07 | 0.04 | 0.03 | −0.03 | 0.02 | 0.02 | 0.02 |
30 PP08 | 0.13 | −0.07 | 0.06 | 0.04 | −0.03 | 0.01 | −0.01 | 0.02 |
30 PP25 | −0.03 | 0.04 | 0.05 | 0.04 | 0.04 | 0.00 | 0.00 | 0.02 |
40 | −0.02 | 0.07 | 0.05 | 0.03 | 0.03 | 0.00 | 0.00 | 0.02 |
50 | −0.01 | 0.06 | 0.04 | 0.03 | 0.02 | 0.00 | 0.00 | 0.02 |
60 | −0.02 | −0.03 | 0.07 | 0.02 | 0.04 | −0.01 | −0.02 | 0.02 |
70 | −0.02 | 0.02 | 0.05 | 0.00 | 0.02 | −0.01 | −0.03 | 0.02 |
80 | −0.02 | 0.02 | 0.03 | 0.00 | 0.02 | −0.01 | −0.03 | 0.01 |
Temp °C | Trim | BT | HT | Trim:HT | Trim:BT | BT:HT | HT:BT:Trim | SE |
δ (ω = 10 rad/s) | ||||||||
0 | −0.29 | −0.06 | −0.08 | 0.01 | −0.09 | −0.07 | −0.04 | 0.11 |
10 | −0.39 | −0.09 | −0.16 | −0.10 | −0.13 | −0.06 | −0.02 | 0.17 |
20 | −0.43 | −0.04 | −0.28 | −0.29 | −0.20 | 0.03 | 0.14 | 0.21 |
30 PP08 | −0.35 | 0.10 | −0.38 | −0.36 | −0.18 | 0.08 | 0.30 | 0.21 |
30 PP25 | 0.10 | 0.23 | −0.14 | −0.04 | −0.31 | 0.02 | 0.26 | 0.15 |
40 | 0.00 | −0.20 | −0.06 | 0.03 | −0.20 | −0.02 | 0.15 | 0.10 |
50 | −0.01 | −0.26 | −0.03 | 0.05 | −0.07 | −0.03 | 0.05 | 0.07 |
60 | −0.03 | 0.16 | −0.09 | 0.03 | −0.02 | 0.02 | 0.01 | 0.04 |
70 | 0.10 | −0.04 | −0.13 | 0.10 | −0.01 | −0.09 | 0.02 | 0.04 |
80 | 0.04 | −0.07 | −0.01 | 0.00 | −0.13 | −0.03 | 0.09 | 0.19 |
Temp °C | Trim | BT | HT | Trim:HT | Trim:BT | BT:HT | HT:BT:Trim | SE/avg G* |
---|---|---|---|---|---|---|---|---|
G*(ω = 10 rad/s) | ||||||||
0 | 0.03 | 0.02 | −0.06 | −0.03 | 0.06 | 0.02 | 0.02 | 0.04 |
10 | 0.04 | 0.02 | −0.06 | −0.03 | 0.07 | 0.02 | 0.02 | 0.04 |
20 | 0.04 | 0.02 | −0.06 | −0.03 | 0.07 | 0.02 | 0.02 | 0.04 |
30 PP08 | 0.04 | 0.01 | −0.07 | −0.04 | 0.08 | 0.03 | 0.02 | 0.05 |
30 PP25 | 0.00 | −0.02 | 0.03 | 0.02 | 0.02 | 0.00 | 0.00 | 0.01 |
40 | 0.01 | −0.02 | 0.03 | 0.02 | 0.02 | 0.00 | −0.01 | 0.01 |
50 | 0.01 | −0.01 | 0.03 | 0.02 | 0.01 | 0.00 | 0.00 | 0.01 |
60 | 0.03 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.00 | 0.01 |
70 | 0.02 | 0.01 | 0.00 | 0.01 | 0.03 | 0.01 | −0.01 | 0.01 |
80 | 0.01 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.00 | 0.01 |
Temp °C | Trim | BT | HT | Trim:HT | Trim:BT | BT:HT | HT:BT:Trim | SE |
δ (ω = 10 rad/s) | ||||||||
0 | −0.24 | −0.07 | 0.04 | −0.01 | −0.27 | −0.03 | 0.05 | 0.10 |
10 | −0.35 | −0.06 | 0.06 | −0.03 | −0.32 | −0.06 | 0.10 | 0.15 |
20 | −0.45 | 0.00 | 0.07 | −0.02 | −0.28 | −0.05 | 0.15 | 0.18 |
30 PP08 | −0.43 | 0.09 | 0.07 | −0.03 | −0.16 | −0.06 | 0.17 | 0.20 |
30 PP25 | −0.19 | 0.29 | −0.01 | 0.00 | −0.11 | −0.06 | 0.01 | 0.09 |
40 | −0.14 | 0.17 | −0.01 | 0.00 | −0.12 | −0.05 | −0.01 | 0.08 |
50 | −0.09 | 0.05 | 0.00 | −0.01 | −0.08 | −0.03 | −0.01 | 0.06 |
60 | −0.03 | −0.01 | 0.03 | −0.01 | −0.07 | −0.06 | 0.02 | 0.02 |
70 | −0.02 | 0.02 | 0.20 | 0.00 | −0.02 | 0.07 | 0.02 | 0.07 |
80 | −0.08 | −0.26 | 0.19 | −0.12 | −0.21 | 0.11 | 0.26 | 0.24 |
Temp °C | Trim | BT | HT | Trim:HT | Trim:BT | BT:HT | HT:BT:Trim | SE/avg G* |
---|---|---|---|---|---|---|---|---|
G*(ω = 10 rad/s) | ||||||||
0 | 0.18 | 0.07 | −0.12 | −0.05 | −0.02 | 0.05 | 0.07 | 0.04 |
10 | 0.17 | 0.19 | −0.17 | −0.04 | −0.03 | 0.06 | 0.08 | 0.04 |
20 | 0.14 | 0.27 | −0.22 | −0.06 | −0.05 | 0.05 | 0.06 | 0.05 |
30 PP08 | 0.14 | 0.24 | −0.22 | −0.13 | −0.07 | 0.05 | 0.02 | 0.06 |
30 PP25 | 0.02 | 0.25 | −0.18 | −0.14 | −0.11 | 0.13 | 0.05 | 0.04 |
40 | 0.02 | 0.13 | −0.09 | −0.13 | −0.09 | 0.14 | 0.02 | 0.02 |
50 | 0.01 | 0.01 | 0.01 | −0.08 | −0.05 | 0.10 | 0.00 | 0.02 |
60 | 0.08 | −0.10 | 0.12 | 0.02 | −0.04 | −0.03 | −0.05 | 0.05 |
70 | 0.05 | −0.05 | 0.10 | 0.03 | −0.04 | −0.03 | −0.05 | 0.04 |
Temp °C | Trim | BT | HT | Trim:HT | Trim:BT | BT:HT | HT:BT:Trim | SE |
δ (ω = 10 rad/s) | ||||||||
0 | −0.34 | −2.98 | 1.62 | −0.25 | 0.33 | −0.88 | −0.42 | 0.49 |
10 | 0.00 | −4.27 | 2.26 | −0.19 | 0.54 | −1.05 | −0.13 | 0.63 |
20 | 0.43 | −4.66 | 2.64 | 0.17 | 0.79 | −0.94 | 0.29 | 0.75 |
30 PP08 | 0.42 | −3.29 | 1.75 | 0.67 | 0.89 | −0.34 | 0.62 | 0.64 |
30 PP25 | 0.11 | −3.18 | 2.42 | 1.49 | 1.89 | −1.48 | −0.87 | 0.48 |
40 | −0.06 | −1.28 | 0.75 | 0.97 | 1.13 | −1.12 | −0.47 | 0.16 |
50 | −0.09 | −0.38 | −0.03 | 0.25 | 0.51 | −0.54 | −0.31 | 0.12 |
60 | −0.25 | 0.05 | −0.13 | −0.08 | −0.04 | 0.04 | 0.03 | 0.11 |
70 | −0.29 | 0.10 | −0.27 | −0.08 | −0.11 | 0.28 | −0.43 | 0.18 |
Temp °C | Trim | BT | HT | Trim:HT | Trim:BT | BT:HT | HT:BT:Trim | SE/avg G* |
---|---|---|---|---|---|---|---|---|
G*(ω = 10 rad/s) | ||||||||
0 | 0.15 | −0.05 | 0.05 | 0.06 | 0.02 | 0.03 | 0.02 | 0.01 |
10 | 0.16 | −0.05 | 0.05 | 0.06 | 0.04 | 0.03 | 0.02 | 0.01 |
20 | 0.18 | −0.05 | 0.05 | 0.06 | 0.05 | 0.02 | 0.01 | 0.02 |
30 PP08 | 0.18 | −0.05 | 0.05 | 0.06 | 0.05 | 0.02 | 0.00 | 0.02 |
30 PP25 | 0.00 | −0.04 | −0.01 | 0.03 | 0.02 | 0.01 | −0.02 | 0.02 |
40 | 0.00 | −0.04 | −0.01 | 0.03 | 0.02 | 0.01 | −0.03 | 0.01 |
50 | 0.01 | −0.03 | −0.01 | 0.02 | 0.01 | 0.01 | −0.03 | 0.01 |
60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.01 | −0.01 | 0.01 |
70 | 0.00 | 0.01 | 0.00 | 0.00 | 0.02 | 0.01 | 0.00 | 0.01 |
Temp °C | Trim | BT | HT | Trim:HT | Trim:BT | BT:HT | HT:BT:Trim | SE |
δ (ω = 10 rad/s) | ||||||||
0 | −0.50 | 0.02 | 0.06 | 0.07 | −0.42 | 0.06 | 0.14 | 0.09 |
10 | −0.77 | 0.01 | 0.09 | 0.12 | −0.52 | 0.13 | 0.26 | 0.15 |
20 | −0.88 | 0.01 | 0.09 | 0.12 | −0.49 | 0.19 | 0.32 | 0.19 |
30 PP08 | −0.87 | 0.09 | 0.03 | 0.03 | −0.41 | 0.18 | 0.31 | 0.22 |
30 PP25 | −0.09 | 0.33 | 0.05 | −0.18 | −0.11 | −0.05 | 0.25 | 0.04 |
40 | −0.05 | 0.14 | 0.01 | −0.10 | −0.08 | −0.05 | 0.18 | 0.04 |
50 | −0.03 | 0.01 | −0.01 | −0.03 | −0.05 | −0.02 | 0.12 | 0.03 |
60 | −0.06 | 0.03 | 0.07 | 0.09 | −0.08 | −0.08 | −0.09 | 0.07 |
70 | 0.02 | −0.14 | −0.29 | −0.01 | 0.13 | −0.38 | 0.00 | 0.21 |
Run Order | G∞ | k | h | α | τ | β | G* R2 | δ R2 | Log (τ) |
---|---|---|---|---|---|---|---|---|---|
1 (YT 6&13) | 3.5 × 108 | 0.39 | 0.68 | 7.11 | 6.8 × 10−4 | 83 | 0.92 | 1 | −3.17 |
2 (NT 2&4) | 5.9 × 108 | 0.35 | 0.67 | 7.95 | 2.8 × 10−4 | 141 | 0.9 | 1 | −3.55 |
3 (YT 1&16) | 2.4 × 108 | 0.41 | 0.7 | 6.93 | 1.8 × 10−3 | 47 | 0.93 | 0.99 | −2.75 |
4 (NT 5&10) | 4.4 × 108 | 0.37 | 0.68 | 8.06 | 5.2 × 10−4 | 92 | 0.89 | 0.99 | −3.28 |
5 (YT 8&12) | 2.4 × 108 | 0.4 | 0.69 | 6.74 | 1.6 × 10−3 | 51 | 0.94 | 1 | −2.79 |
6 (NT 9&14) | 5.5 × 108 | 0.38 | 0.67 | 7.95 | 3.9 × 10−4 | 109 | 0.82 | 1 | −3.40 |
7 (YT 3&11) | 2.8 × 108 | 0.4 | 0.70 | 7.56 | 1.4 × 10−3 | 52 | 0.91 | 0.99 | −2.86 |
8 (NT 7&15) | 5.2 × 108 | 0.36 | 0.66 | 7.72 | 3.4 × 10−4 | 136 | 0.90 | 1 | −3.46 |
avg. | 4.0 × 108 | 0.38 | 0.68 | 7.50 | 8.7 × 10−4 | 88.88 | 0.90 | 1.00 | −3.06 |
SD | 1.4 × 108 | 0.02 | 0.01 | 0.51 | 0.00 | 37.67 | 0.04 | 0.01 | |
CV | 0.36 | 0.06 | 0.02 | 0.07 | 0.70 | 0.42 | 0.04 | 0.01 |
Run Order | G∞ | k | h | α | τ | β | G* R2 | δ R2 | Log (τ) |
---|---|---|---|---|---|---|---|---|---|
1 (YT 6-13) | 3.2 × 108 | 0.46 | 0.72 | 2.83 | 7.8 × 10−4 | 9 | 0.99 | 1 | −3.11 |
2 (NT 2-4) | 8.4 × 108 | 0.29 | 0.66 | 2.92 | 6.3 × 10−5 | 44 | 0.98 | 1 | −4.20 |
3 (YT 1-16) | 3.0 × 108 | 0.35 | 0.68 | 1.54 | 3.4 × 10−4 | 20 | 0.99 | 1 | −3.47 |
4 (NT 5-10) | 2.9 × 108 | 0.48 | 0.71 | 2.98 | 1.1 × 10−3 | 7 | 0.99 | 0.99 | −2.96 |
5 (YT 8-12) | 2.3 × 108 | 0.5 | 0.73 | 2.81 | 1.5 × 10−3 | 6 | 0.99 | 0.99 | −2.82 |
6 (NT 9-14) | 6.7 × 108 | 0.29 | 0.67 | 3.28 | 9.5 × 10−5 | 26 | 1 | 0.99 | −4.02 |
7 (YT 3-11) | 2.4 × 108 | 0.49 | 0.74 | 2.83 | 1.3 × 10−3 | 7 | 0.99 | 0.99 | −2.88 |
8 (NT 7-15) | 2.5 × 108 | 0.5 | 0.73 | 2.96 | 1.4 × 10−3 | 7 | 0.98 | 0.99 | −2.85 |
avg. | 3.9 × 108 | 0.42 | 0.71 | 2.77 | 8.3 × 10−4 | 15.75 | 0.99 | 0.99 | −3.08 |
SD | 2.3 × 108 | 0.09 | 0.03 | 0.52 | 0.00 | 13.58 | 0.01 | 0.01 | |
CV | 0.59 | 0.22 | 0.04 | 0.19 | 0.72 | 0.86 | 0.01 | 0.01 |
Run Order | G∞ | k | h | α | τ | β | G* R2 | δ R2 | Log (τ) |
---|---|---|---|---|---|---|---|---|---|
1 (YT 6-13) | 5.1 × 109 | 0.40 | 0.76 | 101.10 | 1.1 × 10−5 | 62 | 0.99 | 0.96 | −4.97 |
2 (NT 2-4) | 4.3 × 108 | 0.41 | 0.72 | 19.56 | 2.7 × 10−4 | 43 | 0.46 | 0.97 | −3.57 |
3 (YT 1-16) | 5.8 × 109 | 0.38 | 0.74 | 128.61 | 1.5 × 10−5 | 115 | 0.22 | 0.95 | −4.83 |
4 (NT 5-10) | 1.5 × 109 | 0.39 | 0.75 | 68.25 | 1.4 × 10−4 | 40 | 0.38 | 0.95 | −3.86 |
5 (YT 8-12) | 7.2 × 108 | 0.41 | 0.73 | 20.59 | 4.7 × 10−5 | 62 | 1 | 0.97 | −4.32 |
6 (NT 9-14) | 1.8 × 108 | 0.44 | 0.73 | 10.63 | 4.2 × 10−4 | 31 | 0.94 | 0.99 | −3.38 |
7 (YT 3-11) | 1.2 × 109 | 0.39 | 0.73 | 44.51 | 6.5 × 10−5 | 112 | 0.89 | 0.95 | −4.19 |
8 (NT 7-15) | 1.5 × 109 | 0.38 | 0.75 | 48.17 | 5.7 × 10−5 | 86 | 0.88 | 0.97 | −4.24 |
avg. | 2.1 × 109 | 0.40 | 0.74 | 55.18 | 1.3 × 10−4 | 68.88 | 0.72 | 0.96 | −3.89 |
SD | 2.1 × 109 | 0.02 | 0.01 | 41.89 | 0.00 | 32.32 | 0.31 | 0.01 | |
CV | 1.05 | 0.05 | 0.02 | 0.76 | 1.14 | 0.47 | 0.44 | 0.01 |
Run Order | G∞ | k | h | α | τ | β | G* R2 | δ R2 | Log (τ) |
---|---|---|---|---|---|---|---|---|---|
1 (YT 6-13) | 1.0 × 109 | 0.32 | 0.70 | 4.19 | 1.8 × 10−5 | 22 | 1 | 0.99 | −4.75 |
2 (NT 2-4) | 3.7 × 108 | 0.45 | 0.72 | 2.24 | 1.2 × 10−4 | 11 | 0.99 | 0.99 | −3.93 |
3 (YT 1-16) | 2.3 × 108 | 0.18 | 0.72 | 1.58 | 1.3 × 10−4 | 11 | 0.88 | 0.95 | −3.89 |
4 (NT 5-10) | 3.6 × 108 | 0.45 | 0.72 | 2.44 | 1.1 × 10−4 | 11 | 1 | 0.99 | −3.94 |
5 (YT 8-12) | 7.8 × 108 | 0.34 | 0.7 | 3.25 | 2.3 × 10−5 | 23 | 1 | 0.99 | −4.65 |
6 (NT 9-14) | 5.2 × 108 | 0.32 | 0.67 | 1.64 | 3.5 × 10−5 | 26 | 1 | 0.99 | −4.45 |
7 (YT 3-11) | 3.3 × 108 | 0.46 | 0.75 | 2.87 | 1.5 × 10−4 | 8 | 1 | 0.99 | −3.82 |
8 (NT 7-15) | 3.1 × 108 | 0.55 | 0.79 | 4.72 | 5.5 × 10−4 | 3 | 0.95 | 0.99 | −3.26 |
avg. | 4.9 × 108 | 0.38 | 0.72 | 2.87 | 1.4 × 10−4 | 14.38 | 0.98 | 0.99 | −3.85 |
SD | 2.7 × 108 | 0.12 | 0.04 | 1.14 | 0.00 | 8.21 | 0.04 | 0.01 | |
CV | 0.56 | 0.30 | 0.05 | 0.40 | 1.21 | 0.57 | 0.04 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheidaei, M.; Gudmarsson, A.; Langfjell, M. Effect of Various Dynamic Shear Rheometer Testing Methods on the Measured Rheological Properties of Bitumen. Materials 2023, 16, 2745. https://doi.org/10.3390/ma16072745
Sheidaei M, Gudmarsson A, Langfjell M. Effect of Various Dynamic Shear Rheometer Testing Methods on the Measured Rheological Properties of Bitumen. Materials. 2023; 16(7):2745. https://doi.org/10.3390/ma16072745
Chicago/Turabian StyleSheidaei, Maya, Anders Gudmarsson, and Michael Langfjell. 2023. "Effect of Various Dynamic Shear Rheometer Testing Methods on the Measured Rheological Properties of Bitumen" Materials 16, no. 7: 2745. https://doi.org/10.3390/ma16072745
APA StyleSheidaei, M., Gudmarsson, A., & Langfjell, M. (2023). Effect of Various Dynamic Shear Rheometer Testing Methods on the Measured Rheological Properties of Bitumen. Materials, 16(7), 2745. https://doi.org/10.3390/ma16072745