Brillouin Scattering Study of Ferroelectric Instability of Calcium–Strontium–Barium Niobate Single Crystals
Abstract
1. Introduction
2. Experimental Methods
3. Results and Discussion
3.1. Elastic Anomaly of LA Modes
3.2. Critical Slowing down Observed by a Central Peak
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valasek, J. Piezo-Electric and Allied Phenomena in Rochelle Salt. Phys. Rev. 1921, 17, 475–481. [Google Scholar] [CrossRef]
- Geusic, J.E.; Levinstein, H.J.; Rubin, J.J.; Singh, S.; Van Uitert, L.G. The Nonlinear Optical Properties of Ba2NaNb5O15. Appl. Phys. Lett. 1967, 11, 269–271. [Google Scholar] [CrossRef]
- Bell, A.J.; Deubzer, O. Lead-free piezoelectrics—The environmental and regulatory issues. MRS Bull. 2018, 43, 581–587. [Google Scholar] [CrossRef]
- Abrahams, S.C.; Jamieson, P.B.; Bernstein, J.L. Ferroelectric Tungsten Bronze-Type Crystal Structures. III. Potassium Lithium Niobate K(6−x−y)Li(4+x)Nb(10+y)O30. J. Chem. Phys. 1971, 54, 2355–2363. [Google Scholar] [CrossRef]
- Ota, S.; Matsumoto, K.; Suzuki, K.; Kojima, S. Elastic anomaly and order-disorder nature of multiferroic barium sodium niobate studied by broadband Brillouin scattering. IOP Conf. Ser. Mater. Sci. Eng. 2014, 54, 012018. [Google Scholar] [CrossRef]
- Lines, M.E.; Glass, A.M. Principles and Applications of Ferroelectrics and Related Materials; Clarendon Press: Oxford, UK, 1979. [Google Scholar]
- Shvartsman, V.V.; Dec, J.; Miga, S.; Łukasiewicz, T.; Kleemann, W. Ferroelectric Domains in SrxBa1−xNb2O6 Single Crystals (0.4 ≤ × ≤ 0.75). Ferroelectrics 2008, 376, 1–8. [Google Scholar] [CrossRef]
- Aftabuzzaman, M.; Helal, M.A.; Paszkowski, R.; Dec, J.; Kleemann, W.; Kojima, S. Electric field and aging effects of uniaxial ferroelectrics SrxBa1−xNb2O6 probed by Brillouin scattering. Sci. Rep. 2017, 7, 11615. [Google Scholar] [CrossRef]
- Eßer, M.; Burianek, M.; Klimm, D.; Mühlberg, M. Single crystal growth of the tetragonal tungsten bronze CaxBa1−xNb2O6 (x = 0.28; CBN-28). J. Cryst. Growth 2002, 240, 1–5. [Google Scholar] [CrossRef]
- Song, H.; Zhang, H.; Jiang, Q.; Xu, X.; Lu, C.; Hua, X.; Wang, J.; Jiang, M. Growth, dielectric, ferroelectric and optical properties of Ca0.28Ba0.72Nb2O6 single crystals. J. Cryst. Growth 2006, 290, 431–435. [Google Scholar] [CrossRef]
- Rubel, M.H.K.; Islam, M.S.; Mahmuda, U.S.M.; Rahaman, M.M.; Hossain, M.E.; Parvez, M.S.; Hossain, K.M.; Hossain, M.I.; Hossain, J.; Yamanaka, J.; et al. CaxBa1–xNb2O6 Ferroelectric Nanopowders for Ultrahigh-Density Optical Data Storage. ACS Appl. Nano Mater. 2018, 1, 6289–6300. [Google Scholar] [CrossRef]
- Niemer, A.; Pankrath, R.; Betzler, K.; Burianek, M.; Müehlberg, M. Dielectric Properties and the Phase Transition of Pure and Cerium Doped Calcium-Barium-Niobate. World J. Condens. Matter Phys. 2012, 2, 80–84. [Google Scholar] [CrossRef]
- Liu, H.; Xu, Y. The influence of sintering temperature on structural and electrical properties of x (Ca0.28Ba0.72)Nb2O6-(1─x)(Sr0.61Ba0.39)Nb2O6 ceramics. J. Aust. Ceram. Soc. 2020, 56, 1405–1411. [Google Scholar] [CrossRef]
- Qi, Y.J.; Lu, C.J.; Zhu, J.; Chen, X.B.; Song, H.L.; Zhang, H.J.; Xu, X.G. Ferroelectric and dielectric properties of Ca0.28Ba0.72Nb2O6 single crystals of tungsten bronzes structure. Appl. Phys. Lett. 2005, 87, 082904. [Google Scholar] [CrossRef]
- Suzuki, K.; Matsumoto, K.; Dec, J.; Łukasiewicz, T.; Kleemann, W.; Kojima, S. Critical slowing down and elastic anomaly of uniaxial ferroelectric Ca0.28Ba0.72Nb2O6 crystals with tungsten bronze structure. Phys. Rev. B 2014, 90, 064110. [Google Scholar] [CrossRef]
- Lukasiewicz, T.; Swirkowicz, M.A.; Dec, J.; Hofman, W.; Szyrski, W. Strontium–barium niobate single crystals, growth and ferroelectric properties. Crystal Growth 2008, 310, 1464–1469. [Google Scholar] [CrossRef]
- Kojima, S.; Aftabuzzaman, M.; Dec, J.; Kleemann, W. Brillouin Scattering Study of Ferroelectric Instability of Calcium Strontium Barium Niobate Crystals. Proc. Ultrason. Electron. Symp. 2022, 3, 89–90. [Google Scholar]
- Liu, H.; Dkhil, B. Origin of the crossover from ferroelectric to relaxor in tetragonal tungsten bronzes. J. Alloys Comp. 2022, 929, 167314. [Google Scholar] [CrossRef]
- Kojima, S. Gigahertz Acoustic Spectroscopy by Micro-Brillouin Scattering. Jpn. J. Appl. Phys. 2010, 49, 07HA01. [Google Scholar] [CrossRef]
- Wieteska, K.; Wierzchowski, W.; Malinowska, A.; Lefeld-Sosnowska, M.; Świrkowicz, M.; Łukasiewicz, T.; Paulmann, C. Synchrotron diffraction topography of SrxBa1−xNb2O6 (SBN), CaxBa1−xNb2O6 (CBN) and mixed (Ca0.28Ba0.72)y(Sr0.61Ba0.39)1−yNb2O6 (CSBN) crystals. Radiat. Phys. Chem. 2013, 93, 87–91. [Google Scholar] [CrossRef]
- Wierzchowski, W.; Wieteska, K.; Malinowska, A.; Wierzbicka, E.; Romaniec, M.; Lefeld-Sosnowska, M.; Świrkowicz, M.; Łukasiewicz, T.; Sakowska, H.; Paulmann, C. “Ghost” segregation pattern and ferroelectric domains in mixed calcium-strontium-barium niobates. X-ray Spectrom. 2015, 44, 356–362. [Google Scholar] [CrossRef]
- Malyshkina, O.; Ivanova, A.; Malyshkin, Y.; Folomeeva, A.; Shashkov, M.; Dec, J. Effect of Ca, Sr and Ba distribution on the relaxor properties of CSBN single crystals. Ferroelectrics 2017, 511, 76–81. [Google Scholar] [CrossRef]
- Aftabuzzaman, M.; Dec, J.; Kleemann, W.; Kojima, S. Field dependent elastic anomaly in uniaxial tungsten bronze relaxors. Jpn. J. Appl. Phys. 2016, 55, 10TC01. [Google Scholar] [CrossRef]
- Roth, M.; Mojaev, E.; Dul’kin, E.; Gemeiner, P.; Dkhil, B. Phase Transition at a Nanometer Scale Detected by Acoustic Emission within the Cubic Phase Pb(Zn1/3Nb2/3)O3−xPbTiO3 Relaxor Ferroelectrics. Phys. Rev. Lett. 2007, 98, 265701. [Google Scholar] [CrossRef]
- Hays, W.; Loudon, R. Scattering of Light by Crystals; Dover Publishing: New York, NY, USA, 1978. [Google Scholar]
- Mühlberg, M.; Burianek, M.; Joschko, B.; Klimm, D.; Danilewsky, A.; Gelissen, M.; Bayarjargal, L.; Gorler, G.P.; Hildmann, B.O. Phase equilibria, crystal growth and characterization of the novel ferroelectric tungsten bronzes CaxBa1−xNb2O6 (CBN) and CaxSryBa1−x−yNb2O6 (CSBN). J. Crys. Growth 2008, 310, 2288–2294. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, H. Crystal structure effect on the phase transition of (Ca0.28Ba0.72)x (Sr0.61Ba0.39)1−xNb2O6 ceramics. J. Mater. Sci. Mater. Electron. 2020, 31, 5221–5226. [Google Scholar] [CrossRef]
- Kim, M.S.; Wang, P.; Lee, J.H.; Kim, J.J.; Lee, Y.L.; Cho, S.H. Site Occupancy and Dielectric Characteristics of Strontium Barium Niobate Ceramics: Sr/Ba Ratio Dependence. Jpn. J. Appl. Phys. 2002, 41, 7042–7047. [Google Scholar] [CrossRef]
- Kojima, S.; Aftabuzzaman, M.; Dec, J.; Kleemann, W. Ferroelectric phase transitions of uniaxial Sr1−xBaxNb2O6 and their composition variation. Jpn. J. Appl. Phys. 2019, 58, SLLA02. [Google Scholar] [CrossRef]
- Knauss, L.A.; Wang, X.M.; Toulouse, J. Polarization-strain coupling in the mixed ferroelectric KTa1−xNbxO3. Phys. Rev. B 1995, 52, 13261–13268. [Google Scholar] [CrossRef]
- Rahaman, M.M.; Imai, T.; Kobayashi, J.; Kojima, S. Effect of Li-doping on polar-nanoregions in K(Ta1−xNbx)O3 single crystals. Jpn. J. Appl. Phys. 2015, 54, 10NB01. [Google Scholar] [CrossRef]
- Uchino, K.; Nomura, S. Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics 1982, 44, 55–61. [Google Scholar] [CrossRef]
- Dong, X.L.; Kojima, S. Dielectric and resonance frequency investigations of phase transitions in Nb-doped PZT95/5 and 75/25 ceramics. J. Phys. Conden. Matter. 1997, 9, L171. [Google Scholar] [CrossRef]
- Tsukada, S.; Kojima, S. Broadband light scattering of two relaxation processes in relaxor ferroelectric 0.93Pb(Zn1/3Nb2/3)O3−0.07PbTiO3 single crystals. Phys. Rev. B 2008, 78, 144106. [Google Scholar] [CrossRef]
- Kojima, S.; Tsukada, S. Micro-Brillouin Scattering of Relaxor Ferroelectrics with Perovskite Structure. Ferroelectrics 2010, 405, 32. [Google Scholar] [CrossRef]
- Kojima, S. Broadband Brillouin scattering study of ferroelectric instability of barium sodium niobate. Condens. Matter Phys. 2022, 25, 43702. [Google Scholar] [CrossRef]
- Helal, M.A.; Aftabuzzaman, M.; Svirskas, S.; Banys, J.; Kojima, S. Temperature evolution of central peaks and effect of electric field in relaxor ferroelectric 0.83Pb(Mg1/3Nb2/3)O3–0.17PbTiO3 single crystals. Jpn. J. Appl. Phys. 2017, 56, 10PB03. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kojima, S.; Aftabuzzaman, M.; Dec, J.; Kleemann, W. Brillouin Scattering Study of Ferroelectric Instability of Calcium–Strontium–Barium Niobate Single Crystals. Materials 2023, 16, 2502. https://doi.org/10.3390/ma16062502
Kojima S, Aftabuzzaman M, Dec J, Kleemann W. Brillouin Scattering Study of Ferroelectric Instability of Calcium–Strontium–Barium Niobate Single Crystals. Materials. 2023; 16(6):2502. https://doi.org/10.3390/ma16062502
Chicago/Turabian StyleKojima, Seiji, Md Aftabuzzaman, Jan Dec, and Wolfgang Kleemann. 2023. "Brillouin Scattering Study of Ferroelectric Instability of Calcium–Strontium–Barium Niobate Single Crystals" Materials 16, no. 6: 2502. https://doi.org/10.3390/ma16062502
APA StyleKojima, S., Aftabuzzaman, M., Dec, J., & Kleemann, W. (2023). Brillouin Scattering Study of Ferroelectric Instability of Calcium–Strontium–Barium Niobate Single Crystals. Materials, 16(6), 2502. https://doi.org/10.3390/ma16062502