Wet-Oxidation-Assisted Chemical Mechanical Polishing and High-Temperature Thermal Annealing for Low-Loss 4H-SiC Integrated Photonic Devices
Abstract
:1. Introduction
2. Wet-Oxidation-Assisted Chemical Mechanical Polishing
3. Device Fabrication and Characterization
4. High-Temperature Thermal Annealing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elasser, A.; Chow, T.P. Silicon carbide benefits and advantages for power electronics circuits and systems. Proc. IEEE 2002, 90, 969–986. [Google Scholar] [CrossRef]
- Eddy, C.; Gaskill, D. Silicon carbide as a platform for power electronics. Science 2009, 324, 1398–1400. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Verma, J.; Maan, A.; Akhtar, J. Epitaxial 4H–SiC based Schottky diode temperature sensors in ultra-low current range. Vacuum 2020, 182, 109590. [Google Scholar] [CrossRef]
- Kumar, V.; Maan, A.S.; Akhtar, J. Barrier height inhomogeneities induced anomaly in thermal sensitivity of Ni/4H-SiC Schottky diode temperature sensor. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2014, 32, 041203. [Google Scholar] [CrossRef]
- Ou, H.; Ou, Y.; Argyraki, A.; Schimmel, S.; Kaiser, M.; Wellmann, P.; Linnarsson, M.K.; Jokubavicius, V.; Sun, J.; Liljedahl, R.; et al. Advances in wide bandgap SiC for optoelectronics. Eur. Phys. J. B 2014, 87, 1–16. [Google Scholar] [CrossRef]
- Ou, H.; Shi, X.; Lu, Y.; Kollmuss, M.; Steiner, J.; Tabouret, V.; Syväjärvi, M.; Wellmann, P.; Chaussende, D. Novel Photonic Applications of Silicon Carbide. Materials 2023, 16, 1014. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, J.; Fan, W.; Lu, Y.; Peng, N.; Rottwitt, K.; Ou, H. Compact low-birefringence polarization beam splitter using vertical-dual-slot waveguides in silicon carbide integrated platforms. Photonics Res. 2022, 10, A8–A13. [Google Scholar] [CrossRef]
- Shi, X.; Lu, Y.; Peng, N.; Rottwitt, K.; Ou, H. High-performance polarization-independent beam splitters and MZI in silicon carbide integrated platforms for single-photon manipulation. J. Light. Technol. 2022, 40, 7626–7633. [Google Scholar] [CrossRef]
- Shi, X.; Lu, Y.; Ou, H. High-performance silicon carbide polarization beam splitting based on an asymmetric directional couplers for mode conversion. Opt. Lett. 2023, 48, 616–619. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Fan, W.; Lu, Y.; Hansen, A.K.; Chi, M.; Yi, A.; Ou, X.; Rottwitt, K.; Ou, H. Polarization and spatial mode dependent four-wave mixing in a 4H-silicon carbide microring resonator. APL Photonics 2021, 6, 076106. [Google Scholar] [CrossRef]
- Wang, C.; Fang, Z.; Yi, A.; Yang, B.; Wang, Z.; Zhou, L.; Shen, C.; Zhu, Y.; Zhou, Y.; Bao, R.; et al. High-Q microresonators on 4H-silicon-carbide-on-insulator platform for nonlinear photonics. Light. Sci. Appl. 2021, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Fan, W.; Hansen, A.K.; Chi, M.; Yi, A.; Ou, X.; Rottwitt, K.; Ou, H. Thermal Behaviors and Optical Parametric Oscillation in 4H-Silicon Carbide Integrated Platforms. Adv. Photonics Res. 2021, 2, 2100068. [Google Scholar] [CrossRef]
- Guidry, M.A.; Yang, K.Y.; Lukin, D.M.; Markosyan, A.; Yang, J.; Fejer, M.M.; Vučković, J. Optical parametric oscillation in silicon carbide nanophotonics. Optica 2020, 7, 1139–1142. [Google Scholar] [CrossRef]
- Lukin, D.M.; Dory, C.; Guidry, M.A.; Yang, K.Y.; Mishra, S.D.; Trivedi, R.; Radulaski, M.; Sun, S.; Vercruysse, D.; Ahn, G.H.; et al. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photonics 2020, 14, 330–334. [Google Scholar] [CrossRef]
- Castelletto, S. Silicon carbide single-photon sources: Challenges and prospects. Mater. Quantum Technol. 2021, 1, 023001. [Google Scholar] [CrossRef]
- Castelletto, S.; Boretti, A. Silicon carbide color centers for quantum applications. J. Physics: Photonics 2020, 2, 022001. [Google Scholar] [CrossRef]
- Castelletto, S.; Peruzzo, A.; Bonato, C.; Johnson, B.C.; Radulaski, M.; Ou, H.; Kaiser, F.; Wrachtrup, J. Silicon Carbide Photonics Bridging Quantum Technology. ACS Photonics 2022, 9, 1434–1457. [Google Scholar] [CrossRef]
- Guidry, M.A.; Lukin, D.M.; Yang, K.Y.; Trivedi, R.; Vučković, J. Quantum optics of soliton microcombs. Nat. Photonics 2022, 16, 52–58. [Google Scholar] [CrossRef]
- Yang, N.; Jiang, X. Cubic silicon carbide: Growth, properties, and electrochemical applications. In Novel Carbon Materials and Composites: Synthesis, Properties and Applications; Wiley: Hoboken, NJ, USA, 2019; pp. 1–33. [Google Scholar]
- Zhou, L.; Audurier, V.; Pirouz, P.; Powell, J.A. Chemomechanical polishing of silicon carbide. J. Electrochem. Soc. 1997, 144, L161. [Google Scholar] [CrossRef]
- Qian, W.; Skowronski, M.; Augustine, G.; Glass, R.; Hobgood, H.M.; Hopkins, R. Characterization of Polishing-Related Surface Damage in (0001) Silicon Carbide Substrates. J. Electrochem. Soc. 1995, 142, 4290. [Google Scholar] [CrossRef]
- Zhuang, D.; Edgar, J. Wet etching of GaN, AlN, and SiC: A review. Mater. Sci. Eng. R Rep. 2005, 48, 1–46. [Google Scholar] [CrossRef]
- Lee, H.; Jeong, H. Chemical and mechanical balance in polishing of electronic materials for defect-free surfaces. CIRP Ann. 2009, 58, 485–490. [Google Scholar] [CrossRef]
- Pan, G.; Zhou, Y.; Luo, G.; Shi, X.; Zou, C.; Gong, H. Chemical mechanical polishing (CMP) of on-axis Si-face 6H-SiC wafer for obtaining atomically flat defect-free surface. J. Mater. Sci. Mater. Electron. 2013, 24, 5040–5047. [Google Scholar] [CrossRef]
- Zhou, Y.; Pan, G.; Shi, X.; Xu, L.; Zou, C.; Gong, H.; Luo, G. XPS, UV–vis spectroscopy and AFM studies on removal mechanisms of Si-face SiC wafer chemical mechanical polishing (CMP). Appl. Surf. Sci. 2014, 316, 643–648. [Google Scholar] [CrossRef]
- Li, C.; Bhat, I.B.; Wang, R.; Seiler, J. Electro-chemical mechanical polishing of silicon carbide. J. Electron. Mater. 2004, 33, 481–486. [Google Scholar] [CrossRef]
- Deng, H.; Hosoya, K.; Imanishi, Y.; Endo, K.; Yamamura, K. Electro-chemical mechanical polishing of single-crystal SiC using CeO2 slurry. Electrochem. Commun. 2015, 52, 5–8. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.; Yamamura, K. Atomic-scale flattening mechanism of 4H-SiC (0 0 0 1) in plasma assisted polishing. CIRP Ann. 2013, 62, 575–578. [Google Scholar] [CrossRef]
- Deng, H.; Endo, K.; Yamamura, K. Atomic-scale planarization of 4H-SiC (0001) by combination of thermal oxidation and abrasive polishing. Appl. Phys. Lett. 2013, 103, 111603. [Google Scholar] [CrossRef]
- Lukin, D.M.; Guidry, M.A.; Vučković, J. Silicon Carbide: From Abrasives to Quantum Photonics. Opt. Photonics News 2021, 32, 34–41. [Google Scholar] [CrossRef]
- Guo, K.; Shi, X.; Wang, X.; Yang, J.; Ding, Y.; Ou, H.; Zhao, Y. Generation rate scaling: The quality factor optimization of microring resonators for photon-pair sources. Photonics Res. 2018, 6, 587–596. [Google Scholar] [CrossRef]
- Xing, X.; Yoshikawa, T.; Budenkova, O.; Chaussende, D. A sessile drop approach for studying 4H-SiC/liquid silicon high-temperature interface reconstructions. J. Mater. Sci. 2022, 57, 972–982. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Lu, Y.; Chaussende, D.; Rottwitt, K.; Ou, H. Wet-Oxidation-Assisted Chemical Mechanical Polishing and High-Temperature Thermal Annealing for Low-Loss 4H-SiC Integrated Photonic Devices. Materials 2023, 16, 2324. https://doi.org/10.3390/ma16062324
Shi X, Lu Y, Chaussende D, Rottwitt K, Ou H. Wet-Oxidation-Assisted Chemical Mechanical Polishing and High-Temperature Thermal Annealing for Low-Loss 4H-SiC Integrated Photonic Devices. Materials. 2023; 16(6):2324. https://doi.org/10.3390/ma16062324
Chicago/Turabian StyleShi, Xiaodong, Yaoqin Lu, Didier Chaussende, Karsten Rottwitt, and Haiyan Ou. 2023. "Wet-Oxidation-Assisted Chemical Mechanical Polishing and High-Temperature Thermal Annealing for Low-Loss 4H-SiC Integrated Photonic Devices" Materials 16, no. 6: 2324. https://doi.org/10.3390/ma16062324
APA StyleShi, X., Lu, Y., Chaussende, D., Rottwitt, K., & Ou, H. (2023). Wet-Oxidation-Assisted Chemical Mechanical Polishing and High-Temperature Thermal Annealing for Low-Loss 4H-SiC Integrated Photonic Devices. Materials, 16(6), 2324. https://doi.org/10.3390/ma16062324