Homogeneity and Thermal Stability of Sputtered Al0.7Sc0.3N Thin Films
Abstract
1. Introduction
2. Sample Preparation
3. Results and Discussion
3.1. SMR Electrical Response
3.2. SEM and AFM Characterization
3.3. Compositional Study Using RBS and NRA
3.4. Structural Study: XRD Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qorvo. A New Generation of 5G Filter Technology (Thesis); Qorvo: Greensboro, NC, USA, 2020; pp. 1–6. [Google Scholar]
- Qorvo. Advanced BAW Filter Technology and Its Impact on 5G; Qorvo: Greensboro, NC, USA, 2020; pp. 1–10. [Google Scholar]
- Hoffmann, R.; Schreiter, M.; Heitmann, J. The concept of thin film bulk acoustic resonators as selective CO2 gas sensors. J. Sens. Sens. Syst. 2017, 6, 87–96. [Google Scholar] [CrossRef]
- Weber, J.; Albers, W.M.; Tuppurainen, J.; Link, M.; Gabl, R.; Wersing, W.; Schreiter, M. Shear mode FBARs as highly sensitive liquid biosensors. Sens. Actuators A Phys. 2006, 128, 84–88. [Google Scholar] [CrossRef]
- Gillinger, M.; Knobloch, T.; Schneider, M.; Schmid, U. Harsh Environmental Surface Acoustic Wave Temperature Sensor Based on Pure and Scandium doped Aluminum Nitride on Sapphire. Proc. West Mark Ed. Assoc. Conf. 2017, 1, 341. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, Y.; Zhang, Y.; Tovstopyat, A.; Liu, S.; Sun, C. Materials, design, and characteristics of bulk acoustic wave resonator: A review. Micromachines 2020, 11, 630. [Google Scholar] [CrossRef]
- Qiu, X.; Tang, R.; Zhu, J.; Oiler, J.; Yu, C.; Wang, Z.; Yu, H. The effects of temperature, relative humidity and reducing gases on the ultraviolet response of ZnO based film bulk acoustic-wave resonator. Sens. Actuators B Chem. 2011, 151, 360–364. [Google Scholar] [CrossRef]
- Sandeep, K.; Goud, J.P.; Raju, K.C.J. Resonant spectrum method for characterizing Ba0.5Sr0.5TiO3 based high overtone bulk acoustic wave resonators. Appl. Phys. Lett. 2017, 111, 012901. [Google Scholar] [CrossRef]
- Zhu, X.; Lee, V.; Phillips, J.; Mortazawi, A. An intrinsically switchable FBAR filter based on barium titanate thin films. IEEE Microw. Wirel. Compon. Lett. 2009, 19, 359–361. [Google Scholar] [CrossRef]
- Löbl, H.; Klee, M.; Milsom, R.; Dekker, R.; Metzmacher, C.; Brand, W.; Lok, P. Materials for bulk acoustic wave (BAW) resonators and filters. J. Eur. Ceram. Soc. 2001, 21, 2633–2640. [Google Scholar] [CrossRef]
- Bousquet, M.; Perreau, P.; Maeder-Pachurka, C.; Joulie, A.; Delaguillaumie, F.; Delprato, J.; Enyedi, G.; Castellan, G.; Eleouet, C.; Farjot, T.; et al. Lithium niobate film bulk acoustic wave resonator for sub-6 GHz filters. In IEEE International Ultrasonics Symposium, IUS; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar] [CrossRef]
- Moreira, M.; Bjurström, J.; Katardjev, I.; Yantchev, V. Aluminum scandium nitride thin-film bulk acoustic resonators for wide band applications. Vacuum 2011, 86, 23–26. [Google Scholar] [CrossRef]
- Feigelson, R.S. Epitaxial Growth of Lithium Niobate Thin Films by the Solid Source MOCVD Method. J. Cryst. Growth 1996, 166, 1–4. [Google Scholar] [CrossRef]
- Marsh, A.M.; Harkness, S.D.; Qian, F.; Singh, R.K. Pulsed laser deposition of high quality LiNbO3 films on sapphire substrates. Appl. Phys. Lett. 1993, 62, 952–954. [Google Scholar] [CrossRef]
- Paldi, R.L.; Qi, Z.; Misra, S.; Lu, J.; Sun, X.; Phuah, X.L.; Kalaswad, M.; Bischoff, J.; Branch, D.W.; Siddiqui, A.; et al. Nanocomposite-Seeded Epitaxial Growth of Single-Domain Lithium Niobate Thin Films for Surface Acoustic Wave Devices. Adv. Photonics Res. 2021, 2, 2000149. [Google Scholar] [CrossRef]
- Akiyama, M.; Kano, K.; Teshigahara, A. Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films. Appl. Phys. Lett. 2009, 95, 162107. [Google Scholar] [CrossRef]
- Saha, B.; Saber, S.; Naik, G.V.; Boltasseva, A.; Stach, E.A.; Kvam, E.P.; Sands, T.D. Development of epitaxial AlxSc1-xN for artificially structured metal/semiconductor superlattice metamaterials. Phys. Status Solidi B Basic Res. 2015, 252, 251–259. [Google Scholar] [CrossRef]
- Fichtner, S.; Reimer, T.; Chemnitz, S.; Lofink, F.; Wagner, B. Stress controlled pulsed direct current co-sputtered Al1-xScxN as piezoelectric phase for micromechanical sensor applications. APL Mater. 2015, 3, 11. [Google Scholar] [CrossRef]
- Fu, B.; Wang, F.; Cao, R.; Han, Y.; Miao, Y.; Feng, Y.; Xiao, F.; Zhang, K. Optimization of the annealing process and nanoscale piezoelectric properties of (002) AlN thin films. J. Mater. Sci. Mater. Electron. 2017, 28, 9295–9300. [Google Scholar] [CrossRef]
- Clement, M.; Olivares, V.F.J.; Mirea, T.; Olivares, J.; Iborra, E. Effects of Post-Deposition Vacuum Annealing on the Piezoelectric Properties of AlScN Thin Films Sputtered on 200 Mm Production Wafers. In IEEE International Ultrasonics Symposium IUS; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Felmetsger, V.V.; Laptev, P.N.; Tanner, S.M. Design, operation mode, and stress control capability of S-Gun magnetron for ac reactive sputtering. Surf. Coat. Technol. 2009, 204, 840–844. [Google Scholar] [CrossRef]
- Felmetsger, V.; Mikhov, M.; Ramezani, M.; Tabrizian, R. Sputter Process Optimization for Al0.7Sc0.3N Piezoelectric Films. In IEEE International Ultrasonics Symposium, IUS; IEEE: Piscataway, NJ, USA, 2019; pp. 2600–2603. [Google Scholar] [CrossRef]
- Ruby, R.C.; Bradley, P.; Oshmyansky, Y.; Chien, A.; Larson, J.D. Thin film bulk wave acoustic resonators (FBAR) for wireless applications. Proc. IEEE Ultrason. Symp. 2001, 1, 813–821. [Google Scholar] [CrossRef]
- Naik, R.S.; Lutsky, J.J.; Reif, R.; Sodini, C.G.; Becker, A.; Fetter, L.; Huggins, H.; Miller, R.; Pastalan, J.; Rittenhouse, G.; et al. Measurements of the bulk, C-axis electromechanical coupling constant as a function of AlN film quality. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2000, 47, 292–296. [Google Scholar] [CrossRef]
- Ambacher, O. Growth and Applications of Group III-Nitrides. J. Phys. D: Appl. Phys. 1998, 31, 26–53. [Google Scholar] [CrossRef]
- Yang, Q.W.; Lin, R.C.; Sun, S.J. Influence of AlN/ScAlN piezoelectric multilayer on the electromechanical coupling of FBAR. Micro Nanostruct. 2023, 174, 207472. [Google Scholar] [CrossRef]
- Zou, Y.; Gao, C.; Zhou, J.; Liu, Y.; Xu, Q.; Qu, Y.; Liu, W.; Soon, J.B.W.; Cai, Y.; Sun, C. Aluminum scandium nitride thin-film bulk acoustic resonators for 5G wideband applications. Microsyst. Nanoeng. 2022, 8, 1–7. [Google Scholar] [CrossRef]
- Schneider, M.; DeMiguel-Ramos, M.; Flewitt, A.J.; Iborra, E.; Schmid, U. Scandium Aluminium Nitride-Based Film Bulk Acoustic Resonators. Proc. West Mark Ed. Assoc. Conf. 2017, 1, 305. [Google Scholar] [CrossRef]
- Mayer, M. SIMNRA User’s Guide, Report IPP 9/113; Max-Planck-Institut für Plasmaphysik: Garching, Germany, 1997; Available online: https://mam.home.ipp.mpg.de/References.html (accessed on 1 February 2023).
- Chaturvedi, U.K.; Steiner, U.; Zak, O.; Krausch, G.; Schatz, G.; Klein, J. Structure at polymer interfaces determined by high-resolution nuclear reaction analysis. Appl. Phys. Lett. 1990, 56, 1228–1230. [Google Scholar] [CrossRef]
- Jeynes, C.; Colaux, J.L. Thin film depth profiling by ion beam analysis. Analyst 2016, 141, 5944–5985. [Google Scholar] [CrossRef]
- Huang, T.C.; Lim, G.; Parmigiani, F.; Kay, E. Effect of ion bombardment during deposition on the x-ray microstructure of thin silver films. J. Vac. Sci. Technol. A Vac. Surf. Films 1985, 3, 2161–2166. [Google Scholar] [CrossRef]
- Clement, M.; Iborra, E.; Sangrador, J.; Sanz-Hervás, A.; Vergara, L.; Aguilar, M. Influence of sputtering mechanisms on the preferred orientation of aluminum nitride thin films. J. Appl. Phys. 2003, 94, 1495–1500. [Google Scholar] [CrossRef]
- Carmona-Cejas, J.M.; Mirea, T.; Nieto, J.; Olivares, J.; Felmetsger, V.; Clement, M. Temperature stability of Al0.7Sc0.3N sputtered thin films. In IEEE International Ultrasonics Symposium, IUS; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Höglund, C.; Bareo, J.; Birch, J.; Alling, B.; Czigány, Z.; Hultman, L. Cubic Sc1-xAlxN solid solution thin films deposited by reactive magnetron sputter epitaxy onto ScN(111). J. Appl. Phys. 2009, 105, 113517. [Google Scholar] [CrossRef]
- Islam, R.; Wolff, N.; Yassine, M.; Schönweger, G.; Christian, B.; Kiel, D. On the exceptional temperature stability of ferroelectric Al. Appl. Phys. Lett. 2021, 118, 1–11. [Google Scholar] [CrossRef]
Piezoelectric Material | Reference | |
---|---|---|
AlN | 6.5 | [24] |
Al0.91Sc0.9N | 9.53 | [12] |
AlN/Al0.87Sc0.13N | 10 | [26] |
Al0.85Sc0.15N | 12 | [12] |
Al0.8Sc0.2N | 14.5 | [27] |
Al0.73Sc0.27N | 12.18 | [28] |
Al0.7Sc0.3N | 6.3 | This work (worst resonator) |
Al0.7Sc0.3N | 12.8 | This work (best resonator) |
Distance from Center (cm) | ||
---|---|---|
10 (As dep) | ||
10 (after 600 °C) | ||
0.2 (As dep) | ||
0.2 (after 600 °C) |
Distance from Center (cm) | Sc (%) | Al (%) | N (%) | |
---|---|---|---|---|
0–2 cm | 14.3 | 36 | 49.7 | 28.4 |
2–4 cm | 14.5 | 35.8 | 49.7 | 28.8 |
4–6 cm | 14.2 | 35.2 | 50.3 | 28.7 |
6–8 cm | 14.8 | 33.5 | 51.6 | 30.6 |
8–10 cm | 15.2 | 34.5 | 50.2 | 30.6 |
Al0.7Sc0.3N-00·2 Peak | ||
---|---|---|
Distance from center (cm) | FWHM As dep. | FWHM @600 °C |
0–2 | ||
4–6 | ||
8–10 | ||
AlN-00·2 peak | ||
Distance from center (cm) | FWHM As dep. | FWHM @600 °C |
0–2 | ||
4–6 | ||
8–10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carmona-Cejas, J.M.; Mirea, T.; Nieto, J.; Olivares, J.; Felmetsger, V.; Clement, M. Homogeneity and Thermal Stability of Sputtered Al0.7Sc0.3N Thin Films. Materials 2023, 16, 2169. https://doi.org/10.3390/ma16062169
Carmona-Cejas JM, Mirea T, Nieto J, Olivares J, Felmetsger V, Clement M. Homogeneity and Thermal Stability of Sputtered Al0.7Sc0.3N Thin Films. Materials. 2023; 16(6):2169. https://doi.org/10.3390/ma16062169
Chicago/Turabian StyleCarmona-Cejas, José Manuel, Teona Mirea, Jesús Nieto, Jimena Olivares, Valery Felmetsger, and Marta Clement. 2023. "Homogeneity and Thermal Stability of Sputtered Al0.7Sc0.3N Thin Films" Materials 16, no. 6: 2169. https://doi.org/10.3390/ma16062169
APA StyleCarmona-Cejas, J. M., Mirea, T., Nieto, J., Olivares, J., Felmetsger, V., & Clement, M. (2023). Homogeneity and Thermal Stability of Sputtered Al0.7Sc0.3N Thin Films. Materials, 16(6), 2169. https://doi.org/10.3390/ma16062169