Theoretical Study on All-Dielectric Elliptic Cross Metasurface Sensor Governed by Bound States in the Continuum
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O′Brien, S.; Pendry, J.B. Photonic band-gap effects and magnetic activity in dielectric composites. J. Phys.-Condens. Mat. 2002, 14, 4035–4044. [Google Scholar] [CrossRef]
- Yang, Q.L.; Chen, X.Y.; Xu, Q.; Tian, C.X.; Xu, Y.H.; Cong, L.Q.; Zhang, X.Q.; Li, Y.F.; Zhang, C.H.; Zhang, X.X.; et al. Broadband terahertz rotator with an all-dielectric metasurface. Photonics Res. 2018, 6, 1056–1061. [Google Scholar] [CrossRef]
- Deng, C.Z.; Ho, Y.L.; Clark, J.K.; Yatsui, T.; Delaunay, J.J. Light Switching with a Metal-Free Chiral-Sensitive Metasurface at Telecommunication Wavelengths. ACS Photonics 2020, 7, 2915–2922. [Google Scholar] [CrossRef]
- Li, J.; Yue, Z.; Li, J.; Zheng, C.; Wang, S.; Li, M.; Zhang, Y.T.; Zhang, Y.; Yao, J. Diverse terahertz wavefront manipulations empowered by the spatially interleaved metasurfaces. Sci. China-Inf. Sci. 2023, 66, 132301. [Google Scholar] [CrossRef]
- Yue, Z.; Zheng, C.L.; Li, J.; Li, J.T.; Liu, J.Y.; Wang, G.C.; Chen, M.Y.; Xu, H.; Tan, Q.; Zhang, H.J.; et al. A dual band spin-selective transmission metasurface and its wavefront manipulation. Nanoscale 2021, 13, 10898–10905. [Google Scholar] [CrossRef]
- Li, J.; Yue, Z.; Li, J.; Zheng, C.; Liu, J.; Yang, F.; Li, H.; Zhang, Y.; Zhang, Y.; Yao, J. Wavefront-controllable all-silicon terahertz meta-polarizer. Sci. China Mater. 2023, 66, 300–308. [Google Scholar] [CrossRef]
- Li, J.T.; Wang, G.C.; Yue, Z.; Liu, J.Y.; Li, J.; Zheng, C.L.; Zhang, Y.T.; Zhang, Y.; Yao, J.Q. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization. Opto-Electron. Adv. 2022, 5, 210062-1. [Google Scholar] [CrossRef]
- Yue, Z.; Li, J.; Li, J.; Zheng, C.; Liu, J.; Wang, G.; Xu, H.; Chen, M.; Zhang, Y.; Zhang, Y.; et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion. Opto-Electron. Sci. 2022, 1, 210014. [Google Scholar] [CrossRef]
- Yue, Z.; Li, J.T.; Liu, J.Y.; Li, J.; Zheng, C.L.; Wang, G.C.; Xu, H.; Chen, M.Y.; Zhang, Y.T.; Zhang, Y.; et al. Versatile Polarization Conversion and Wavefront Shaping Based on Fully Phase-Modulated Metasurface with Complex Amplitude Modulation. Adv. Opt. Mater. 2022, 10, 2200733. [Google Scholar] [CrossRef]
- Wang, Q.; Plum, E.; Yang, Q.L.; Zhang, X.Q.; Xu, Q.; Xu, Y.H.; Han, J.G.; Zhang, W.L. Reflective chiral meta-holography: Multiplexing holograms for circularly polarized waves. Light-Sci. Appl. 2018, 7, 25. [Google Scholar] [CrossRef]
- Zheng, G.X.; Zhou, N.; Deng, L.G.; Li, G.F.; Tao, J.; Li, Z.L. Full-space metasurface holograms in the visible range. Opt. Express 2021, 29, 2920–2930. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, X.; Zhou, H.Q.; Wei, Q.S.; Geng, G.Z.; Li, J.J.; Li, X.W.; Wang, Y.T.; Huang, L.L. Multifocal Plane Display Based on Dual Polarity Stereoscopic Metasurface. Adv. Funct. Mater. 2022, 32, 2209460. [Google Scholar] [CrossRef]
- Slobozhanyuk, A.P.; Poddubny, A.N.; Raaijmakers, A.J.E.; van den Berg, C.A.T.; Kozachenko, A.V.; Dubrovina, I.A.; Melchakova, I.V.; Kivshar, Y.S.; Belov, P.A. Enhancement of Magnetic Resonance Imaging with Metasurfaces. Adv. Mater. 2016, 28, 1832–1838. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Shen, Z.C.; Wang, D.C.; Xu, B.J.; Chen, X.N.; Yang, Y.M. Synthetic aperture metalens. Photonics Res. 2021, 9, 2388–2397. [Google Scholar] [CrossRef]
- Zhou, J.X.; Zhao, J.X.; Wu, Q.Y.; Chen, C.F.; Lei, M.; Chen, G.H.; Tian, F.L.; Liu, Z.W. Nonlinear Computational Edge Detection Metalens. Adv. Funct. Mater. 2022, 32, 2204734. [Google Scholar] [CrossRef]
- Li, J.; Li, J.T.; Yue, Z.; Zheng, C.L.; Wang, G.C.; Liu, J.Y.; Xu, H.; Song, C.Y.; Yang, F.; Li, H.; et al. Structured Vector Field Manipulation of Terahertz Wave along the Propagation Direction Based on Dielectric Metasurfaces. Laser Photonics Rev. 2022, 16, 2200325. [Google Scholar] [CrossRef]
- Yue, Z.; Liu, J.Y.; Li, J.T.; Li, J.; Zheng, C.L.; Chen, M.Y.; Xu, H.; Zhang, H.J.; Yang, F.; Zhang, Y.T.; et al. Vector beam generation based on spin-decoupling metasurface zone plate. Appl. Phys. Lett. 2022, 120, 191704. [Google Scholar] [CrossRef]
- Zheng, C.L.; Li, J.; Liu, J.Y.; Li, J.T.; Yue, Z.; Li, H.; Yang, F.; Zhang, Y.T.; Zhang, Y.; Yao, J.Q. Creating Longitudinally Varying Vector Vortex Beams with an All-Dielectric Metasurface. Laser Photonics Rev. 2022, 16, 2200236. [Google Scholar] [CrossRef]
- Wang, Q.H.; Ni, P.N.; Xie, Y.Y.; Kan, Q.; Chen, P.P.; Fu, P.; Deng, J.; Jin, T.L.; Chen, H.D.; Lee, H.W.H.; et al. On-Chip Generation of Structured Light Based on Metasurface Optoelectronic Integration. Laser Photonics Rev. 2021, 15, 2000385. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, C.; Zhang, Y.Z.; Qiu, C.W. Integrated Molar Chiral Sensing Based on High-Q Metasurface. Nano Lett. 2020, 20, 8696–8703. [Google Scholar] [CrossRef]
- Hsiao, H.H.; Hsu, Y.C.; Liu, A.Y.; Hsieh, J.C.; Lin, Y.H. Integrated Molar Chiral Sensing Based on High-Q Metasurface. Ultrasensitive Refractive Index Sensing Based on the Quasi-Bound States in the Continuum of All-Dielectric Metasurfaces. Adv. Opt. Mater. 2022, 10, 2200812. [Google Scholar] [CrossRef]
- Maksimov, D.N.; Gerasimov, V.S.; Romano, S.; Polyutov, S.P. Refractive index sensing with optical bound states in the continuum. Opt. Express 2020, 28, 38907–38916. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Zhang, C.; Xiao, S.M.; Wang, Y.H.; Fan, Y.B.; Liu, Y.L.; Zhang, N.; Qu, G.Y.; Ji, H.J.; Han, J.C.; et al. Ultrafast control of vortex microlasers. Science 2020, 367, 1018. [Google Scholar] [CrossRef]
- Bernhardt, N.; Koshelev, K.; White, S.J.U.; Meng, K.W.C.; Froch, J.E.; Kim, S.; Tran, T.T.; Choi, D.Y.; Kivshar, Y.; Solntsev, A.S. Quasi-BIC Resonant Enhancement of Second-Harmonic Generation in WS2 Monolayers. Nano Lett. 2020, 20, 5309–5314. [Google Scholar] [CrossRef] [PubMed]
- Li, J.T.; Li, J.; Zheng, C.L.; Yue, Z.; Wang, S.L.; Li, M.Y.; Zhao, H.L.; Zhang, Y.T.; Yao, J.Q. Free switch between bound states in the continuum (BIC) and quasi-BIC supported by graphene-metal terahertz metasurfaces. Carbon 2021, 182, 506–515. [Google Scholar] [CrossRef]
- Li, J.T.; Yue, Z.; Li, J.; Zheng, C.L.; Zhang, Y.T.; Yao, J.Q. Ultra-narrowband terahertz circular dichroism driven by planar metasurface supporting chiral quasi bound states in continuum. Opt. Laser Technol. 2023, 161, 109173. [Google Scholar] [CrossRef]
- Hsu, C.W.; Zhen, B.; Stone, A.D.; Joannopoulos, J.D.; Soljacic, M. Bound states in the continuum. Nat. Rev. Mater. 2016, 1, 16048. [Google Scholar] [CrossRef]
- Cong, L.Q.; Singh, R. Symmetry-Protected Dual Bound States in the Continuum in Metamaterials. Adv. Opt. Mater. 2019, 7, 1900383. [Google Scholar] [CrossRef]
- Wang, J.; Kuhne, J.; Karamanos, T.; Rockstuhl, C.; Maier, S.A.; Tittl, A. All-Dielectric Crescent Metasurface Sensor Driven by Bound States in the Continuum. Adv. Funct. Mater. 2021, 31, 2104652. [Google Scholar] [CrossRef]
- Hu, Y.Z.; Tong, M.Y.; Hu, S.Y.; He, W.B.; Cheng, X.A.; Jiang, T. Spatiotemporal Lineshape Tailoring in BIC-Mediated Reconfigurable Metamaterials. Adv. Funct. Mater. 2022, 32, 2203680. [Google Scholar] [CrossRef]
- Campione, S.; Liu, S.; Basilio, L.I.; Warne, L.K.; Langston, W.L.; Luk, T.S.; Wendt, J.R.; Reno, J.L.; Keeler, G.A.; Brener, I.; et al. Broken Symmetry Dielectric Resonators for High Quality Factor Fano Metasurfaces. ACS Photonics 2016, 3, 2362–2367. [Google Scholar] [CrossRef]
- Koshelev, K.; Lepeshov, S.; Liu, M.K.; Bogdanov, A.; Kivshar, Y. Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum. Phys. Rev. Lett. 2018, 121, 193903. [Google Scholar] [CrossRef] [PubMed]
- Yesilkoy, F.; Arvelo, E.R.; Jahani, Y.; Liu, M.K.; Tittl, A.; Cevher, V.; Kivshar, Y.; Altug, H. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics 2019, 13, 390–396. [Google Scholar] [CrossRef]
- Li, J.T.; Li, J.; Zheng, C.L.; Yue, Z.; Yang, D.Y.; Wang, S.L.; Li, M.Y.; Zhang, Y.T.; Yao, J.Q. Spectral amplitude modulation and dynamic near-field displaying of all-silicon terahertz metasurfaces supporting bound states in the continuum. Appl. Phys. Lett. 2021, 119, 241105. [Google Scholar] [CrossRef]
- Wang, Y.L.; Han, Z.H.; Du, Y.; Qin, J.Y. Ultrasensitive terahertz sensing with high-Q toroidal dipole resonance governed by bound states in the continuum in all-dielectric metasurface. Nanophotonics 2021, 10, 1295–1307. [Google Scholar] [CrossRef]
- Sherry, L.J.; Chang, S.-H.; Schatz, G.C.; Van Duyne, R.P.; Wiley, B.J.; Xia, Y. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett. 2005, 5, 2034–2038. [Google Scholar] [CrossRef]
- Zhong, Y.; Du, L.; Liu, Q.; Zhu, L.; Meng, K.; Zou, Y.; Zhang, B. Ultrasensitive specific sensor based on all-dielectric metasurfaces in the terahertz range. RSC Adv. 2020, 10, 33018–33025. [Google Scholar] [CrossRef]
- Xie, Q.; Dong, G.-X.; Wang, B.X.; Huang, W.Q. High-Q fano resonance in terahertz frequency based on an asymmetric metamaterial resonator. Nanoscale Res. Lett. 2018, 13, 294. [Google Scholar] [CrossRef]
- Yahiaoui, R.; Tan, S.; Cong, L.; Singh, R.; Yan, F.; Zhang, W. Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber. J. Appl. Phys. 2015, 118, 083103. [Google Scholar] [CrossRef]
- He, X.; Zhang, Q.; Lu, G.; Ying, G.; Wu, F.; Jiang, J. Tunable ultrasensitive terahertz sensor based on complementary graphene metamaterials. RSC Adv. 2016, 6, 52212–52218. [Google Scholar] [CrossRef]
- Schiattarella, C.; Sanità, G.; Alulema, B.G.; Lanzio, V.; Cabrini, S.; Lamberti, A.; Rendina, I.; Mocella, V.; Zito, G.; Romano, S. High-Q photonic aptasensor based on avoided crossing bound states in the continuum and trace detection of ochratoxin A. Biosens. Bioelectron. X 2022, 12, 100262. [Google Scholar] [CrossRef]
- Chen, X.; Fan, W. Ultrahigh-Q toroidal dipole resonance in all-dielectric metamaterials for terahertz sensing. Opt. Lett. 2019, 44, 5876–5879. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Liu, D.; Yang, H.L.; Wang, H.X.; Wang, Y. Staggered H-shaped metamaterial based on electromagnetically induced transparency effect and its refractive index sensing performance. Opt. Commun. 2019, 450, 202–207. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, H.; Yu, X.; Mao, L. Theoretical Study on All-Dielectric Elliptic Cross Metasurface Sensor Governed by Bound States in the Continuum. Materials 2023, 16, 2113. https://doi.org/10.3390/ma16052113
Cai H, Yu X, Mao L. Theoretical Study on All-Dielectric Elliptic Cross Metasurface Sensor Governed by Bound States in the Continuum. Materials. 2023; 16(5):2113. https://doi.org/10.3390/ma16052113
Chicago/Turabian StyleCai, Haocheng, Xiaoxu Yu, and Luhong Mao. 2023. "Theoretical Study on All-Dielectric Elliptic Cross Metasurface Sensor Governed by Bound States in the Continuum" Materials 16, no. 5: 2113. https://doi.org/10.3390/ma16052113
APA StyleCai, H., Yu, X., & Mao, L. (2023). Theoretical Study on All-Dielectric Elliptic Cross Metasurface Sensor Governed by Bound States in the Continuum. Materials, 16(5), 2113. https://doi.org/10.3390/ma16052113