A Selective Oxidation Strategy towards the Yolk–Shell Structured ZnS@C Material for Ultra-Stable Li-Ion Storage
Abstract
1. Introduction
2. Synthesis
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ye, H.; Zheng, G.; Yang, X.; Zhang, D.; Zhang, Y.; Yan, S.; You, L.; Hou, S.; Huang, Z. Application of different carbon-based transition metal oxide composite materials in lithium-ion batteries. J. Electroanal. Chem. 2021, 898, 115652. [Google Scholar] [CrossRef]
- Yang, Y.; Okonkwo, E.G.; Huang, G.; Xu, S.; Sun, W.; He, Y. On the sustainability of lithium ion battery industry-A review and perspective. Energy Storage Mater. 2021, 36, 186–212. [Google Scholar] [CrossRef]
- Xiao, Z.; Wang, R.H.; Jiang, D.T.; Qian, Z.F.; Li, Y.; Yang, K.S.; Sun, Y.L.; Zeng, Z.Y.; Wu, F.X. Recent Developments of Two-Dimensional Anode Materials and Their Composites in Lithium-Ion Batteries. ACS Appl. Energy Mater. 2021, 4, 7440–7461. [Google Scholar] [CrossRef]
- Chen, S.; Fan, L.; Xu, L.; Liu, Q.; Qin, Y.; Lu, B. 100 K cycles: Core-shell H-FeS@C based lithium-ion battery anode. Energy Storage Mater. 2017, 8, 20–27. [Google Scholar] [CrossRef]
- Xie, J.; Carrasco, J.; Li, R.; Shen, H.; Chen, Q.; Yang, M. Novel 3D flower-like micro/nano-structure FeS/N-doped-C composites as advanced cathodes with high lithium storage performances. J. Power Sources 2019, 431, 226–231. [Google Scholar] [CrossRef]
- Xu, W.; Wang, T.; Wu, S.; Wang, S. N-doped carbon-coated MoS2 nanosheets on hollow carbon microspheres for high-performance lithium-ion batteries. J. Alloys Compd. 2017, 698, 68–76. [Google Scholar] [CrossRef]
- Chen, B.; Lu, H.; Zhao, N.; Shi, C.; Liu, E.; He, C.; Ma, L. Facile synthesis and electrochemical properties of continuous porous spheres assembled from defect-rich, interlayer-expanded, and few-layered MoS2/C nanosheets for reversible lithium storage. J. Power Sources 2018, 387, 16–23. [Google Scholar] [CrossRef]
- Mahmood, N.; Zhang, C.Z.; Hou, Y.L. Nickel Sulfide/Nitrogen-Doped Graphene Composites: Phase-Controlled Synthesis and High Performance Anode Materials for Lithium Ion Batteries. Small 2013, 9, 1321–1328. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Zhao, H.; Xie, Y.; Fang, J.; Xu, J.; Chen, Z. Facile Hydrothermal Synthesis of VS2/Graphene Nanocomposites with Superior High-Rate Capability as Lithium-Ion Battery Cathodes. ACS Appl. Mater. Interfaces 2015, 7, 13044–13052. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.J.; Tian, L.L.; Li, S.K.; Lin, L.P.; Pan, F. Mesoporous and carbon hybrid structures from layered molecular precursors for Li-ion battery application: The case of beta-In2S3. Chem. Commun. 2016, 52, 4788–4791. [Google Scholar] [CrossRef]
- Zhang, J.T.; Yu, L.; Lou, X.W. Embedding CoS2 nanoparticles in N-doped carbon nanotube hollow frameworks for enhanced lithium storage properties. Nano Res. 2017, 10, 4298–4304. [Google Scholar] [CrossRef]
- Zhang, M.; Xie, H.; Fan, H.; Zeng, T.; Yang, W.; Zheng, W.; Liang, H.; Liu, Z. Two-dimensional carbon-coated CoS2 nanoplatelets issued from a novel Co(OH)(OCH3) precursor as anode materials for lithium ion batteries. Appl. Surf. Sci. 2020, 516, 146133. [Google Scholar] [CrossRef]
- Jiang, Y.; Ding, Y.W.; Chen, F.; Wang, Z.X.; Xu, Y.; Huang, S.S.; Chen, Z.W.; Zhao, B.; Zhang, J.J. Structural phase transformation from SnS2/reduced graphene oxide to SnS/sulfur-doped graphene and its lithium storage properties. Nanoscale 2020, 12, 1697–1706. [Google Scholar] [CrossRef]
- Ren, J.; Ren, R.P.; Lv, Y.K. Hollow spheres constructed by ultrathin SnS sheets for enhanced lithium storage. J. Mater. Sci. 2020, 55, 7492–7501. [Google Scholar] [CrossRef]
- Zhao, B.; Song, D.Y.; Ding, Y.W.; Wu, J.; Wang, Z.X.; Chen, Z.W.; Jiang, Y.; Zhang, J.J. Ultrastable Li-ion battery anodes by encapsulating SnS nanoparticles in sulfur-doped graphene bubble films. Nanoscale 2020, 12, 3941–3949. [Google Scholar] [CrossRef]
- Chai, W.; Yang, F.; Yin, W.; You, S.; Wang, K.; Ye, W.; Rui, Y.; Tang, B. Bi2S3/C nanorods as efficient anode materials for lithium-ion batteries. Dalton Trans. 2019, 48, 1906–1914. [Google Scholar] [CrossRef]
- Camacho, R.A.P.; Wu, A.-M.; Jin, X.-Z.; Dong, X.-F.; Li, X.-N.; Huang, H. Effective carbon constraint of MnS nanoparticles as high-performance anode of lithium-ion batteries. J. Power Sources 2019, 437, 226931. [Google Scholar] [CrossRef]
- Chen, J.; Cong, J.; Chen, Y.; Wang, Q.; Shi, M.; Liu, X.; Yang, H. MnS nanoparticles embedded in N,S co-doped carbon nanosheets for superior lithium ion storage. Appl. Surf. Sci. 2020, 508, 145239. [Google Scholar] [CrossRef]
- Elizabeth, I.; Singh, B.P.; Gopukumar, S. Electrochemical performance of Sb2S3/CNT free-standing flexible anode for Li-ion batteries. J. Mater. Sci. 2019, 54, 7110–7118. [Google Scholar] [CrossRef]
- Liu, Y.X.; Lu, Z.C.; Cui, J.; Liu, H.; Liu, J.; Hu, R.Z.; Zhu, M. Plasma milling modified Sb2S3-graphite nanocomposite as a highly reversible alloying-conversion anode material for lithium storage. Electrochim. Acta 2019, 310, 26–37. [Google Scholar] [CrossRef]
- Foley, S.; Geaney, H.; Bree, G.; Stokes, K.; Connolly, S.; Zaworotko, M.J.; Ryan, K.M. Copper sulfide (CuxS) nanowire-in-carbon composites formed from direct sulfurization of the metal-organic framework HKUST-1 and their use as Li-ion battery cathodes. Adv. Funct. Mater. 2018, 28, 1800587. [Google Scholar] [CrossRef]
- Tian, G.Y.; Zhao, Z.J.; Sarapulova, A.; Das, C.; Zhu, L.H.; Liu, S.Y.; Missiul, A.; Welter, E.; Maibach, J.; Dsoke, S. Understanding the Li-ion storage mechanism in a carbon composited zinc sulfide electrode. J. Mater. Chem. A 2019, 7, 15640–15653. [Google Scholar] [CrossRef]
- Wang, P.; Jiang, Y.; Cao, Y.Y.; Wu, X.J.; Liu, X. MOF-derived ZnS/NC yolk–shell composites for highly reversible lithium storage. New J. Chem. 2022, 46, 11101–11107. [Google Scholar] [CrossRef]
- Teng, Y.; Liu, H.; Liu, D.; He, H.; Chen, Y. Pitaya-like carbon-coated ZnS/carbon nanospheres with inner three-dimensional nanostructure as high-performance anode for lithium-ion battery. J. Colloid Interface Sci. 2019, 554, 220–228. [Google Scholar] [CrossRef]
- Ikram, S.; Muller, M.; Dsoke, S.; Rana, U.A.; Sarapulova, A.; Bauer, W.; Siddigi, H.M.; Szabo, D.V. One step in situ synthesis of ZnS/N and S co-doped carbon composites via salt templating for lithium-ion battery applications. New J. Chem. 2019, 43, 13038–13047. [Google Scholar] [CrossRef]
- Purbia, R.; Paria, S. Yolk/shell nanoparticles: Classifications, synthesis, properties, and applications. Nanoscale 2015, 7, 19789–19873. [Google Scholar] [CrossRef]
- Moon, G.D. Yolk Shell Nanostructures: Syntheses and Applications for Lithium-Ion Battery Anodes. Nanomaterials 2020, 10, 675. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.P.; Sougrati, M.T.; Feng, Z.X.; Leconte, Y.; Fisher, A.; Srinivasan, M.; Xu, Z.C. A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes. Adv. Energy Mater. 2017, 7, 1601424. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.; Wu, C.; Ding, Y.; Guan, L. A Yolk-Shell Fe3O4@C Composite as an Anode Material for High-Rate Lithium Batteries. ChemPlusChem 2012, 77, 748–751. [Google Scholar] [CrossRef]
- Zhang, W.-M.; Hu, J.-S.; Guo, Y.-G.; Zheng, S.-F.; Zhong, L.-S.; Song, W.-G.; Wan, L.-J. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv. Mater. 2008, 20, 1160–1165. [Google Scholar] [CrossRef]
- Ko, Y.N.; Choi, S.H.; Park, S.B.; Kang, Y.C. Preparation of Yolk-Shell and Filled Co9S8 Microspheres and Comparison of their Electrochemical Properties. Chem. Asian J. 2014, 9, 572–576. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.D.; Jiao, J.Q.; Xia, J.; Zhong, H.M.; Chen, L.P. A self-standing and flexible electrode of yolk-shell CoS2 spheres encapsulated with nitrogen-doped graphene for high-performance lithium-ion batteries. Chem. Eur. J. 2015, 21, 4359–4367. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Yang, J.P.; Chou, S.L.; Liu, H.K.; Zhang, W.X.; Zhao, D.Y.; Dou, S.X. Uniform yolk-shell iron sulfide-carbon nanospheres for superior sodium-iron sulfide batteries. Nat. Commun. 2015, 6, 8689. [Google Scholar] [CrossRef] [PubMed]
- Won, J.M.; Lee, J.-H.; Kang, Y.C. Electrochemical Properties of Yolk-Shell-Structured Zn-Fe-S Multicomponent Sulfide Materials with a 1:2 Zn/Fe Molar Ratio. Chem. Eur. J. 2015, 21, 1429–1433. [Google Scholar] [CrossRef]
- Zhang, D.; Mai, Y.J.; Xiang, J.Y.; Xia, X.H.; Qiao, Y.Q.; Tu, J.P. FeS2/C composite as an anode for lithium ion batteries with enhanced reversible capacity. J. Power Sources 2012, 217, 229–235. [Google Scholar] [CrossRef]
- Kim, J.H.; Kang, Y.C. Yolk-shell-structured (Fe0.5Ni0.5)9S8 solid-solution powders: Synthesis and application as anode materials for Na-ion batteries. Nano Res. 2017, 10, 3178–3188. [Google Scholar] [CrossRef]
- Jin, Z.S.; Liang, Z.M.; Zhao, M.; Zhang, Q.; Liu, B.Q.; Zhang, L.Y.; Chen, L.H.; Li, L.; Wang, C.G. Rational design of MoNi sulfide yolk-shell heterostructure nanospheres as the efficient sulfur hosts for high-performance lithium-sulfur batteries. Chem. Eng. J. 2020, 394, 124983. [Google Scholar] [CrossRef]
- Ding, X.X.; Shao, J.; Lv, L.Z.; Zhu, Y.H.; Jiang, Y.; Shi, Q.; Qu, Q.T.; Zheng, H.H. Yolk-shell Sb2S3@C hollow microspheres with controllable interiors for high space utilization and structural stability of Na-storage. ChemNanoMat 2022, 8, e202100515. [Google Scholar] [CrossRef]
- Xu, X.J.; Li, F.K.; Zhang, D.C.; Liu, Z.B.; Zuo, S.Y.; Zeng, Z.Y.; Liu, J. Self-Sacrifice Template Construction of Uniform Yolk-Shell ZnS@C for Superior Alkali-Ion Storage. Adv. Sci. 2022, 9, 11. [Google Scholar] [CrossRef]
- Liao, W.H.; Hu, Q.Q.; Cheng, M.; Wu, X.H.; Zhan, G.H.; Yan, R.B.; Li, J.R.; Huang, X.Y. Preparation of ZnS@N-doped-carbon composites via a ZnS-amine precursor vacuum pyrolysis route. RSC Adv. 2021, 11, 33344–33353. [Google Scholar] [CrossRef]
- Shi, X.; Gan, Y.; Zhang, Q.; Wang, C.; Zhao, Y.; Guan, L.; Huang, W. A Partial Sulfuration Strategy Derived Multi-Yolk-Shell Structure for Ultra-Stable K/Na/Li-ion Storage. Adv. Mater. 2021, 33, 2100837. [Google Scholar] [CrossRef]
- Jin, R.C.; Zhou, J.H.; Guan, Y.S.; Liu, H.; Chen, G. Mesocrystal Co9S8 hollow sphere anodes for high performance lithium ion batteries. J. Mater. Chem. A 2014, 2, 13241–13244. [Google Scholar] [CrossRef]
- Kruk, M.; Jaroniec, M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem. Mater. 2001, 13, 3169–3183. [Google Scholar] [CrossRef]
- Qi, L.; Tang, X.; Wang, Z.; Peng, X. Pore characterization of different types of coal from coal and gas outburst disaster sites using low temperature nitrogen adsorption approach. Int. J. Min. Sci. Technol. 2017, 27, 371–377. [Google Scholar] [CrossRef]
- Li, J.; Yan, D.; Zhang, X.; Hou, S.; Lu, T.; Yao, Y.; Pan, L. ZnS nanoparticles decorated on nitrogen-doped porous carbon polyhedra: A promising anode material for lithium-ion and sodium-ion batteries. J. Mater. Chem. A 2017, 5, 20428–20438. [Google Scholar] [CrossRef]
- Wang, Y.; Kang, W.; Cao, D.; Zhang, M.; Kang, Z.; Xiao, Z.; Wang, R.; Sun, D. A yolk–shelled Co9S8/MoS2–CN nanocomposite derived from a metal–organic framework as a high performance anode for sodium ion batteries. J. Mater. Chem. A 2018, 6, 4776–4782. [Google Scholar] [CrossRef]
- Zhao, R.; Han, Y.; Li, W.; Li, J.; Chen, M.; Chen, L. Construction of nanocage-structured heterogeneous binary metal sulfides via step-by-step confined growth for boosted lithium storage properties. Chem. Commun. 2020, 56, 6798–6801. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.B.; Zhang, C.J.; Liu, Z.H.; Wang, L.; Han, P.X.; Xu, H.X.; Zhang, K.J.; Dong, S.M.; Yao, J.H.; Cui, G.L. Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J. Mater. Chem. 2011, 21, 5430–5434. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Zhou, X.; Zhao, Y.; Peng, W. Defected graphene as effective co-catalyst of CdS for enhanced photocatalytic activities. Environ. Sci. Pollut. Res. 2020, 27, 26810–26816. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, L.; Du, A.; Gao, G.; Chen, J.; Yan, X.; Brown, C.L.; Yao, X. Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 2016, 28, 9532–9538. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.S.; Hu, P.; Zhang, C.J.; Du, H.P.; Zhang, Z.H.; Wang, X.G.; Chen, S.G.; Xiong, J.W.; Cui, G.L. Nickel Disulfide-Graphene Nanosheets Composites with Improved Electrochemical Performance for Sodium Ion Battery. ACS Appl. Mater. Interfaces 2016, 8, 7811–7817. [Google Scholar] [CrossRef] [PubMed]
- Mueller, F.; Geiger, D.; Kaiser, U.; Passerini, S.; Bresser, D. Elucidating the impact of cobalt doping on the lithium storage mechanism in conversion/alloying-type zinc oxide anodes. ChemElectroChem 2016, 3, 1311–1319. [Google Scholar] [CrossRef]
- Mao, M.; Jiang, L.; Wu, L.; Zhang, M.; Wang, T. The structure control of ZnS/graphene composites and their excellent properties for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 13384–13389. [Google Scholar] [CrossRef]
- Chang, K.; Chen, W. L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 2011, 5, 4720–4728. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Song, H.; Chen, X. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochem. Commun. 2009, 11, 1320–1324. [Google Scholar] [CrossRef]
- Liu, H.; Wang, G.; Wang, J.; Wexler, D. Magnetite/carbon core-shell nanorods as anode materials for lithium-ion batteries. Electrochem. Commun. 2008, 10, 1879–1882. [Google Scholar] [CrossRef]
- Lei, K.; Wang, C.; Liu, L.; Luo, Y.; Mu, C.; Li, F.; Chen, J. A Porous Network of Bismuth Used as the Anode Material for High-Energy-Density Potassium-Ion Batteries. Angew. Chem. Int. Ed. 2018, 57, 4687–4691. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, W.; Hu, Q.; Lin, X.; Yan, R.; Zhan, G.; Wu, X.; Huang, X. A Selective Oxidation Strategy towards the Yolk–Shell Structured ZnS@C Material for Ultra-Stable Li-Ion Storage. Materials 2023, 16, 2097. https://doi.org/10.3390/ma16052097
Liao W, Hu Q, Lin X, Yan R, Zhan G, Wu X, Huang X. A Selective Oxidation Strategy towards the Yolk–Shell Structured ZnS@C Material for Ultra-Stable Li-Ion Storage. Materials. 2023; 16(5):2097. https://doi.org/10.3390/ma16052097
Chicago/Turabian StyleLiao, Wenhua, Qianqian Hu, Xiaoshan Lin, Ruibo Yan, Guanghao Zhan, Xiaohui Wu, and Xiaoying Huang. 2023. "A Selective Oxidation Strategy towards the Yolk–Shell Structured ZnS@C Material for Ultra-Stable Li-Ion Storage" Materials 16, no. 5: 2097. https://doi.org/10.3390/ma16052097
APA StyleLiao, W., Hu, Q., Lin, X., Yan, R., Zhan, G., Wu, X., & Huang, X. (2023). A Selective Oxidation Strategy towards the Yolk–Shell Structured ZnS@C Material for Ultra-Stable Li-Ion Storage. Materials, 16(5), 2097. https://doi.org/10.3390/ma16052097