Correlation between Cellular Structure Morphology and Anisotropic Yield in Additively Manufactured Stainless Steel 316L
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barkia, B.; Aubry, P.; Haghi-Ashtiani, P.; Auger, T.; Gosmain, L.; Schuster, F.; Maskrot, H. On the origin of the high tensile strength and ductility of additively manufactured 316 L stainless steel: Multiscale investigation. J. Mater. Sci. Technol. 2020, 41, 209–218. [Google Scholar] [CrossRef]
- Kong, D.; Dong, C.; Wei, S.; Ni, X.; Zhang, L.; Li, R.; Wang, L.; Man, C.; Li, X. About metastable cellular structure in additively manufactured austenitic stainless steels. Addit. Manuf. 2021, 28, 101804. [Google Scholar] [CrossRef]
- Melzer, D.; Dzugan, J.; Koukolikova, M.; Rzepa, S.; Vavrik, J. Structural integrity and mechanical properties of the functionally graded material based on 316 L/IN718 processed by DED technology. Mater. Sci. Eng. A 2021, 811, 141038. [Google Scholar] [CrossRef]
- Oh, W.J.; Lee, W.J.; Kim, M.S.; Jeon, J.B.; Shim, D.S. Repairing additive-manufactured 316 L stainless steel using direct energy deposition. Opt. Laser. Technol. 2019, 117, 6–17. [Google Scholar] [CrossRef]
- Yadollahi, A.; Shamsaei, N. Additive manufacturing of fatigue resistant materials: Challenges and opportunities. Int. J. Fatigue 2017, 98, 14–31. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Liu, Z.Y.; Fang, X.Y.; Guo, Y.B. Residual stress in metal additive manufacturing. Procedia CIRP 2018, 71, 348–353. [Google Scholar] [CrossRef]
- Haley, J.C.; Schoenung, J.M.; Lavernia, E.J. Modeling particle impact on the melt pool and wettability effects in laser directed energy deposition additive manufacturing. Mater. Sci. Eng. A 2019, 761, 138052. [Google Scholar] [CrossRef]
- Beese, A.; Carroll, B.E. Review of mechanical properties of Ti-6Al-4V made by laser-based additive manufacturing using powder feedstock. J. Miner. Met. Mater. Soc. 2016, 68, 3. [Google Scholar] [CrossRef]
- Liu, L.; Ding, Q.; Zhong, Y.; Zou, J.; Wu, J.; Chiu, Y.L.; Li, J.; Zhang, Z.; Yu, Q.; Shen, Z. Dislocation network in additive manufactured steel breaks strength-ductility trade-off. Mater. Today 2018, 21, 354–361. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.M.; Voisin, T.; McKeown, J.T.; Ye, J.; Calta, N.P.; Li, Z.; Zeng, Z.; Zhang, Y.; Chen, W.; Roechling, T.T.; et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat. Mater. 2018, 17, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.K.; Woo, W.; Kim, E.Y.; Choi, S.H. Microstructure and mechanical characteristics of multi-layered materials composed of 316 L stainless steel and ferritic steel produced by direct energy deposition. J. Alloys Compd. 2019, 774, 896–907. [Google Scholar] [CrossRef]
- Saboori, A.; Aversa, A.; Marchese, G.; Biamino, S.; Lombardi, M.; Fino, P. Application of directed energy deposition-based additive manufacturing in repair. Appl. Sci. 2019, 9, 3316. [Google Scholar] [CrossRef] [Green Version]
- Cederberg, E.; Hosseini, V.A.; Kumara, C.; Karlsson, L. Physical simulation of additively manufactured super duplex stainless steels—Microstructure and properties. Addit. Manuf. 2020, 34, 101269. [Google Scholar] [CrossRef]
- Xia, Z.; Shi, J.; Shi, T.; Sun, C.; Qiu, D. Microstructure evolution and mechanical properties of reduced activation steel manufactured through laser directed energy deposition. Addit. Manuf. 2020, 33, 101114. [Google Scholar] [CrossRef]
- Kok, Y.; Tan, X.P.; Nai, M.L.S.; Loh, N.H.; Liu, E.; Tor, S.B. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review. Mater. Des. 2018, 139, 565–586. [Google Scholar] [CrossRef]
- Li, Z.; He, B.; Guo, Q. Strengthening and hardening mechanisms of additively manufactured stainless steels: The role of cell sizes. Scr. Mater. 2020, 177, 17–21. [Google Scholar] [CrossRef]
- Ronneberg, T.; Davies, C.M.; Hooper, P.A. Revealing relationships between porosity, microstructure and mechanical properties of laser powder bed fusion 316 L stainless steel through heat treatment. Mater. Des. 2020, 189, 108481. [Google Scholar] [CrossRef]
- Kong, D.; Ni, X.; Dong, C.; Zhang, L.; Man, C.; Yao, J.; Xiao, K.; Li, X. Heat treatment effect on the microstructure and corrosion behavior of 316 L stainless steel fabricated by selective laser melting for proton exchange membrane fuel cells. Electrochim. Acta 2018, 20, 293–303. [Google Scholar] [CrossRef]
- Karthik, G.M.; Kim, H.S. Heterogeneous aspects of additive manufactured metallic parts: A review. Met. Mater. Int. 2021, 27, 1–39. [Google Scholar] [CrossRef]
- Shen, J.; Li, Y.L.; Wei, Q. Statistics deviation of Taylor factors for polycrystalline metals with application to pure magnesium. Mater Sci. Eng. A 2013, 582, 270–275. [Google Scholar] [CrossRef]
- Gubicza, J.; Chinh, N.Q.; Csanadi, T.; Langdon, T.G.; Ungar, T. Microstructure and strength of severely deformed fcc metals. Mater. Sci. Eng. A 2007, 462, 86–90. [Google Scholar] [CrossRef]
- Harte, A.; Atkinson, M.; Preuss, M.; Quinta da Fonseca, J. A statistical study of the relationship between plastic strain and lattice misorientation on the surface of a deformed Ni-based superalloy. Acta Mater. 2020, 195, 555–570. [Google Scholar] [CrossRef]
- Zhao, M.; Ji, X.; Li, B.; Laing, S.Y. Effect of crystallographic orientation on the hardness of polycrystalline materials. J. Mech. Eng. Sci. 2019, 233, 3182–3192. [Google Scholar] [CrossRef]
- Zhao, M.; Ji, X.; Liang, S.Y. Force prediction in micro-grinding maraging steel 3J33b considering the crystallographic orientation and phase transformation. Int. J. Adv. Manuf. Technol. 2019, 103, 2821–2836. [Google Scholar] [CrossRef]
- Miura, T.; Fujii, K.; Fukuya, K.; Takashima, K. Influence of crystal orientation on hardness and nanoindentation deformation in ion-irradiated stainless steels. J. Nucl. Mater. 2011, 417, 984–987. [Google Scholar] [CrossRef]
Grain Orientation | Cell Growth Direction | Angle between Grain Orientation and Cell Growth Direction | Cellular Structure Morphology |
---|---|---|---|
(111) | [100] | 54.7° | Elongated |
[010] | 54.7° | Elongated | |
[001] | 54.7° | Elongated | |
(110) | [100] | 45.0° | Elongated |
[010] | 45.0° | Elongated | |
[001] | 90.0° | Lath-like | |
(100) | [100] | 0° | Equiaxed |
[010] | 90.0° | Lath-like | |
[001] | 90.0° | Lath-like |
Direction | Yield Strength (MPa) | |
---|---|---|
Average (MPa) | Standard Deviation | |
BD | 520 | 2.5 |
TD | 542 | 6.2 |
Specimen | Cellular Structure Morphology | Average | Standard Deviation |
---|---|---|---|
SUS316L | Equiaxed Elongated Lath-like | 218 HV 244 HV 226 HV | 6.6 7.3 14.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.W.; Han, S.B.; Lee, Y.S.; Park, D.Y.; Lee, H.-J.; Park, S.H.; Song, H. Correlation between Cellular Structure Morphology and Anisotropic Yield in Additively Manufactured Stainless Steel 316L. Materials 2023, 16, 1666. https://doi.org/10.3390/ma16041666
Kim DW, Han SB, Lee YS, Park DY, Lee H-J, Park SH, Song H. Correlation between Cellular Structure Morphology and Anisotropic Yield in Additively Manufactured Stainless Steel 316L. Materials. 2023; 16(4):1666. https://doi.org/10.3390/ma16041666
Chicago/Turabian StyleKim, Dae Woong, Soo Bin Han, Yoon Sun Lee, Dong Yong Park, Ho-Jin Lee, Sung Hyuk Park, and Hyejin Song. 2023. "Correlation between Cellular Structure Morphology and Anisotropic Yield in Additively Manufactured Stainless Steel 316L" Materials 16, no. 4: 1666. https://doi.org/10.3390/ma16041666
APA StyleKim, D. W., Han, S. B., Lee, Y. S., Park, D. Y., Lee, H. -J., Park, S. H., & Song, H. (2023). Correlation between Cellular Structure Morphology and Anisotropic Yield in Additively Manufactured Stainless Steel 316L. Materials, 16(4), 1666. https://doi.org/10.3390/ma16041666