Strong Plasmon-Mie Resonance in Si@Pd Core-Ω Shell Nanocavity
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Nonlinear Optical Response of Si@Pd Core-Ω Shell Nanocavity
3.2. Resonance Modes of Si@Pd Core-Ω Shell Nanocavity
3.3. Effect of SPR on the Nonlinear Optical Response of Si NS
3.4. Influence of LSPR on Si@Pd Core-Ω Shell Nanocavity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiang, J.; Chen, J.; Jiang, S.; Panmai, M.; Li, P.; Xu, Y.; Dai, Q.; Tie, S.; Lan, S. Liquid Gallium Nanospheres Emitting White Light. Laser Photonics Rev. 2019, 13, 1800214. [Google Scholar] [CrossRef]
- Makarov, S.V.; Sinev, I.S.; Milichko, V.A.; Komissarenko, F.E.; Zuev, D.A.; Ushakova, E.V.; Mukhin, I.S.; Yu, Y.F.; Kuznetsov, A.I.; Belov, P.A.; et al. Nanoscale Generation of White Light for Ultrabroadband Nanospectroscopy. Nano Lett. 2018, 18, 535–539. [Google Scholar]
- Xiang, J.; Jiang, S.; Chen, J.; Li, J.; Dai, Q.; Zhang, C.; Xu, Y.; Tie, S.; Lan, S. Hot-Electron Intraband Luminescence from GaAs Nanospheres Mediated by Magnetic Dipole Resonances. Nano Lett. 2017, 17, 4853–4859. [Google Scholar] [PubMed]
- Burgess, T.; Saxena, D.; Mokkapati, S.; Li, Z.; Hall, C.R.; Davis, J.A.; Wang, Y.; Smith, L.M.; Fu, L.; Caroff, P.; et al. Doping-enhanced radiative efficiency enables lasing in unpassivated GaAs nanowires. Nat. Commun. 2016, 7, 11927. [Google Scholar] [CrossRef]
- Riikonen, S.; Romero, I.; Garcia de Abajo, F.J. Plasmon tunability in metallodielectric metamaterials. Phys. Rev. B 2005, 71, 235104. [Google Scholar]
- Raza, S.; Kadkhodazadeh, S.; Christensen, T.; Di Vece, M.; Wubs, M.; Mortensen, N.A.; Stenger, N. Multipole plasmons and their disappearance in few-nanometre silver nanoparticles. Nat. Commun. 2015, 6, 8788. [Google Scholar] [CrossRef]
- Dai, Q.F.; Ouyang, M.; Yuan, W.G.; Li, J.X.; Guo, B.H.; Lan, S.; Liu, S.H.; Zhang, Q.M.; Lu, G.; Tie, S.L.; et al. Encoding Random Hot Spots of a Volume Gold Nanorod Assembly for Ultralow Energy Memory. Adv. Mater. 2017, 29, 1701918. [Google Scholar] [CrossRef]
- Luo, L.B.; Xie, C.; Wang, X.H.; Yu, Y.Q.; Wu, C.Y.; Hu, H.; Zhou, K.Y.; Zhang, X.W.; Jie, J.S. Surface plasmon resonance enhanced highly efficient planar silicon solar cell. Nano Energy 2014, 9, 112–120. [Google Scholar] [CrossRef]
- Tang, P.; Liu, G.Q.; Liu, X.S.; Fu, G.L.; Liu, Z.Q.; Wang, J.Q. Plasmonic wavy surface for ultrathin semiconductor black absorbers. Opt. Express 2020, 28, 27764–27773. [Google Scholar]
- Linghu, S.; Gu, Z.; Lu, J.; Fang, W.; Yang, Z.; Yu, H.; Li, Z.; Zhu, R.; Peng, J.; Zhan, Q.; et al. Plasmon-driven nanowire actuators for on-chip manipulation. Nat. Commun. 2021, 12, 385. [Google Scholar]
- Liu, M.S.; Jin, X.; Li, S.; Billeau, J.B.; Peng, T.Y.; Li, H.; Zhao, L.; Zhang, Z.T.; Claverie, J.P.; Razzari, L.; et al. Enhancement of Scattering and Near Field of TiO2-Au Nanohybrids Using a Silver Resonator for Efficient Plasmonic Photocatalysis. ACS Appl. Mater. Interfaces 2021, 13, 34714–34723. [Google Scholar] [CrossRef]
- Hwang, J.H.; Park, S.; Son, J.; Park, J.W.; Nam, J.M. DNA-Engineerable Ultraflat-Faceted Core-Shell Nanocuboids with Strong, Quantitative Plasmon-Enhanced Fluorescence Signals for Sensitive, Reliable MicroRNA Detections. Nano Lett. 2021, 21, 2132–2140. [Google Scholar] [CrossRef]
- Bai, Z.H.; Chen, R.; Si, P.; Huang, Y.J.; Sun, H.D.; Kim, D.H. Fluorescent pH Sensor Based on Ag@SiO2 Core-Shell Nanoparticle. ACS Appl. Mater. Interfaces 2013, 5, 5856–5860. [Google Scholar]
- Jiang, Z.L.; Dong, B.; Chen, B.T.; Wang, J.; Xu, L.; Zhang, S.; Song, H.W. Multifunctional Au@mSiO2/Rhodamine B Isothiocyanate Nanocomposites: Cell Imaging, Photocontrolled Drug Release, and Photothermal Therapy for Cancer Cells. Small 2013, 9, 604–612. [Google Scholar]
- Schuller, J.A.; Zia, R.; Taubner, T.; Brongersma, M.L. Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles. Phys. Rev. Lett. 2007, 99, 107401. [Google Scholar] [CrossRef]
- Kuznetsov, A.I.; Miroshnichenko, A.E.; Fu, Y.H.; Zhang, J.; Luk’Yanchuk, B. Magnetic light. Sci. Rep. 2012, 2, 492. [Google Scholar] [CrossRef] [Green Version]
- Ginn, J.C.; Brener, I.; Peters, D.W.; Wendt, J.R.; Stevens, J.O.; Hines, P.F.; Basilio, L.I.; Warne, L.K.; Ihlefeld, J.F.; Clem, P.G.; et al. Realizing Optical Magnetism from Dielectric Metamaterials. Phys. Rev. Lett. 2012, 108, 097402. [Google Scholar] [CrossRef]
- Kuznetsov, A.I.; Miroshnichenko, A.E.; Brongersma, M.L.; Kivshar, Y.S.; Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 2016, 354, aag2472. [Google Scholar]
- Yang, Z.J.; Jiang, R.B.; Zhuo, X.L.; Xie, Y.M.; Wang, J.F.; Lin, H.Q. Dielectric nanoresonators for light manipulation. Phys. Rep.-Rev. Section of Phys. Lett. 2017, 701, 1–50. [Google Scholar] [CrossRef]
- Jahani, S.; Jacob, Z. All-dielectric metamaterials. Nat. Nanotechnol. 2016, 11, 23–36. [Google Scholar]
- Lank, N.O.; Verre, R.; Johansson, P.; Kall, M. Large-Scale Silicon Nanophotonic Metasurfaces with Polarization Independent Near-Perfect Absorption. Nano Lett. 2017, 17, 3054–3060. [Google Scholar] [CrossRef]
- Evlyukhin, A.B.; Eriksen, R.L.; Cheng, W.; Beermann, J.; Reinhardt, C.; Petrov, A.; Prorok, S.; Eich, M.; Chichkov, B.N.; Bozhevolnyi, S.I. Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances. Sci. Rep. 2014, 4, 4126. [Google Scholar]
- Kapitanova, P.; Ternovski, V.; Miroshnichenko, A.; Pavlov, N.; Belov, P.; Kivshar, Y.; Tribelsky, M. Giant field enhancement in high-index dielectric subwavelength particles. Sci. Rep. 2017, 7, 731. [Google Scholar]
- Liu, S.; Wei, Y.; Li, X.; Yu, Y.; Liu, J.; Yu, S.; Wang, X. Dual-resonance enhanced quantum light-matter interactions in deterministically coupled quantum-dot-micropillars. Light Sci. Appl. 2021, 10, 158. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Xu, Y.; Liu, J.; Li, J.T.; Xiang, J.; Li, H.; Li, J.X.; Dai, Q.F.; Lan, S.; Miroshnichenko, A.E. Lighting up silicon nanoparticles with Mie resonances. Nat. Commun. 2018, 9, 2964. [Google Scholar] [CrossRef]
- Glassner, S.; Keshmiri, H.; Hill, D.J.; Cahoon, J.F.; Fernandez, B.; den Hertog, M.I.; Lugstein, A. Tuning Electroluminescence from a Plasmonic Cavity-Coupled Silicon Light Source. Nano Lett. 2018, 18, 7230–7237. [Google Scholar] [CrossRef]
- Ren, M.-L.; Liu, W.; Aspetti, C.O.; Sun, L.; Agarwal, R. Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes. Nat. Commun. 2014, 5, 5432. [Google Scholar] [CrossRef]
- Li, H.; Peng, Y.; Lu, R. Substrate-Modulated Electric and Magnetic Resonances of Lithium Niobite Nanoparticles Illuminated by White Light. Nanomaterials 2022, 12, 2010. [Google Scholar]
- Assadillayev, A.; Hinamoto, T.; Fujii, M.; Sugimoto, H.; Brongersma, M.L.; Raza, S. Plasmon Launching and Scattering by Silicon Nanoparticles. ACS Photonics 2021, 8, 1582–1591. [Google Scholar]
- Evlyukhin, A.B.; Bozhevolnyi, S.I. Resonant unidirectional and elastic scattering of surface plasmon polaritons by high refractive index dielectric nanoparticles. Phys. Rev. B 2015, 92, 245419. [Google Scholar] [CrossRef]
- Alessandri, I.; Lombardi, J.R. Enhanced Raman Scattering with Dielectrics. Chem. Rev. 2016, 116, 14921–14981. [Google Scholar] [CrossRef]
- Xu, L.; Rahmani, M.; Kamali, K.Z.; Lamprianidis, A.; Ghirardini, L.; Sautter, J.; Camacho-Morales, R.; Chen, H.T.; Parry, M.; Staude, I.; et al. Boosting third-harmonic generation by a mirror-enhanced anapole resonator. Light Sci. Appl. 2018, 7, 44. [Google Scholar]
- Xiang, J.; Panmai, M.; Bai, S.; Ren, Y.; Li, G.C.; Li, S.; Liu, J.; Li, J.; Zeng, M.; She, J.; et al. Crystalline Silicon White Light Sources Driven by Optical Resonances. Nano Lett. 2021, 21, 2397–2405. [Google Scholar] [CrossRef]
- Gattass, R.R.; Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photonics 2008, 2, 219–225. [Google Scholar] [CrossRef]
- Zhong, K.J.; Gao, Y.Q.; Li, F.; Luo, N.N.; Zhang, W.W. Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD. Opt. Laser Technol. 2014, 56, 367–371. [Google Scholar]
- Bonse, J.; Graf, S. Maxwell Meets Marangoni-A Review of Theories on Laser-Induced Periodic Surface Structures. Laser Photonics Rev. 2020, 14, 2000215. [Google Scholar]
- Stratakis, E.; Bonse, J.; Heitz, J.; Siegel, J.; Tsibidis, G.D.; Skoulas, E.; Papadopoulos, A.; Mimidis, A.; Joel, A.C.; Comanns, P.; et al. Laser engineering of biomimetic surfaces. Mater. Sci. Eng. R-Rep. 2020, 141, 100562. [Google Scholar]
- Palm, K.J.; Murray, J.B.; Narayan, T.C.; Munday, J.N. Dynamic Optical Properties of Metal Hydrides. ACS Photonics 2018, 5, 4677–4686. [Google Scholar]
- Schinke, C.; Peest, P.C.; Schmidt, J.; Brendel, R.; Bothe, K.; Vogt, M.R.; Kroger, I.; Winter, S.; Schirmacher, A.; Lim, S.; et al. Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon. AIP Adv. 2015, 5, 067168. [Google Scholar] [CrossRef]
- Haug, T.; Klemm, P.; Bange, S.; Lupton, J.M. Hot-electron intraband luminescence from single hot spots in noble-metal nanoparticle films. Phys. Rev. Lett. 2015, 115, 067403. [Google Scholar]
- Liu, K.-K.; Song, S.-Y.; Sui, L.-Z.; Wu, S.-X.; Jing, P.-T.; Wang, R.-Q.; Li, Q.-Y.; Wu, G.-R.; Zhang, Z.-Z.; Yuan, K.-J.; et al. Efficient Red/Near-Infrared-Emissive Carbon Nanodots with Multiphoton Excited Upconversion Fluorescence. Adv. Sci. 2019, 6, 1900766. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.-H.; Aspetti, C.O.; Park, J.; Agarwal, R. Silicon coupled with plasmon nanocavities generates bright visible hot luminescence. Nat. Photonics 2013, 7, 285–289. [Google Scholar] [CrossRef]
- Sinev, I.; Iorsh, I.; Bogdanov, A.; Permyakov, D.; Komissarenko, F.; Mukhin, I.; Samusev, A.; Valuckas, V.; Kuznetsov, A.I.; Luk’yanchuk, B.S.; et al. Polarization control over electric and magnetic dipole resonances of dielectric nanoparticles on metallic films. Laser Photonics Rev. 2016, 10, 799–806. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Hu, Q.; Zhang, C.; Liu, H.; Wu, R.; Pan, S. Strong Plasmon-Mie Resonance in Si@Pd Core-Ω Shell Nanocavity. Materials 2023, 16, 1453. https://doi.org/10.3390/ma16041453
Guo H, Hu Q, Zhang C, Liu H, Wu R, Pan S. Strong Plasmon-Mie Resonance in Si@Pd Core-Ω Shell Nanocavity. Materials. 2023; 16(4):1453. https://doi.org/10.3390/ma16041453
Chicago/Turabian StyleGuo, Haomin, Qi Hu, Chengyun Zhang, Haiwen Liu, Runmin Wu, and Shusheng Pan. 2023. "Strong Plasmon-Mie Resonance in Si@Pd Core-Ω Shell Nanocavity" Materials 16, no. 4: 1453. https://doi.org/10.3390/ma16041453
APA StyleGuo, H., Hu, Q., Zhang, C., Liu, H., Wu, R., & Pan, S. (2023). Strong Plasmon-Mie Resonance in Si@Pd Core-Ω Shell Nanocavity. Materials, 16(4), 1453. https://doi.org/10.3390/ma16041453