Polycrystalline WO3−x Thin Films Obtained by Reactive DC Sputtering at Room Temperature
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, M.; Yang, C.; Zhang, Z.; Tian, W.; Hui, B.; Zhang, J.; Zhang, K. Tungsten oxide polymorphs and their multifunctional applications. Adv. Colloid Interface Sci. 2022, 300, 102596. [Google Scholar] [CrossRef]
- Shinde, P.A.; Jun, S.C. Review on recent progress in the development of tungsten oxide based electrodes for electrochemical energy storage. ChemSusChem 2020, 13, 11–38. [Google Scholar] [CrossRef] [PubMed]
- Mardare, C.C.; Hassel, A.W. Review on the versatility of tungsten oxide coatings. Phys. Status Solidi 2019, 216, 1900047. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Li, Y.; Zafar, S.; Yang, S.; Chen, J.; Zhou, H.; Zhang, Y. Recent progress in hole-transporting layers of conventional organic solar cells with p–i–n structure. Adv. Funct. Mater. 2022, 32, 2205398. [Google Scholar] [CrossRef]
- Srivastava, S.; Jain, K.; Singh, V.N.; Singh, S.; Vijayan, N.; Dilawar, N.; Gupta, G.; Senguttuvan, T.D. Faster response of NO2 sensing in graphene–WO3 nanocomposites. Nanotechnology 2012, 23, 205501. [Google Scholar] [CrossRef]
- Depero, L.E.; Groppelli, S.; Natali-Sora, I.; Sangaletti, L.; Sberveglieri, G.; Tondello, E. Structural studies of tungsten-titanium oxide thin films. J. Solid State Chem. 1996, 121, 379–387. [Google Scholar] [CrossRef]
- Mattoni, G.; Filippetti, A.; Manca, N.; Zubko, P.; Caviglia, A.D. Charge doping and large lattice expansion in oxygen-deficient heteroepitaxial WO3. Phys. Rev. Mater. 2018, 2, 053402. [Google Scholar] [CrossRef]
- Wu, C.M.; Naseem, S.; Chou, M.H.; Wang, J.H.; Jian, Y.Q. Recent advances in tungsten-oxide-based materials and their applications. Front. Mater. 2019, 6, 49. [Google Scholar] [CrossRef]
- Park, S.I.; Quan, Y.J.; Kim, S.H.; Kim, H.; Kim, S.; Chun, D.M.; Lee, C.S.; Taya, M.; Chu, W.S.; Ahn, S.H. A review on fabrication processes for electrochromic devices. Int. J. Precis. Eng. Manuf. Green Technol. 2016, 3, 397–421. [Google Scholar] [CrossRef]
- Xia, Z.; Wang, H.; Su, Y.; Tang, P.; Dai, M.; Lin, H.; Zhang, Z.; Shi, Q. Enhanced electrochromic properties by improvement of crystallinity for sputtered WO3 film. Coatings 2020, 10, 577. [Google Scholar] [CrossRef]
- Karuppasamy, A. Electrochromism in surface modified crystalline WO3 thin films grown by reactive DC magnetron sputtering. Appl. Surf. Sci. 2013, 282, 77–83. [Google Scholar] [CrossRef]
- Liang, Y.-C.; Chang, C.-W. Preparation of orthorhombic WO3 thin films and their crystal quality-dependent dye photodegradation ability. Coatings 2019, 9, 90. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, Y.; Li, W.; Dou, S.; Wang, L.; Qu, H.; Zhao, J.; Li, Y. Preparation and performances of all-solid-state variable infrared emittance devices based on amorphous and crystalline WO3 electrochromic thin films. Sol. Energy Mater. Sol. Cells 2019, 200, 109916. [Google Scholar] [CrossRef]
- Karthik Yadav, P.V.; Ajitha, B.; Reddy, Y.A.K.; Minnam Reddy, V.R.; Reddeppa, M.; Kim, M.-D. Effect of sputter pressure on UV photodetector performance of WO3 thin films. Appl. Surf. Sci. 2021, 536, 147947. [Google Scholar] [CrossRef]
- Yadav, P.V.K.; Reddy, Y.A.K.; Ajitha, B.; Minnam Reddy, V.R. Oxygen partial pressure dependent UV photodetector performance of WO3 sputtered thin films. J. Alloys Compd. 2020, 816, 152565. [Google Scholar] [CrossRef]
- Duarte, D.A.; Massi, M.; Da Silva Sobrinho, A.S.; Tezani, L.L.; Fontana, L.C.; Maciel, H.S. Influence of electronegative gas on the efficiency of conventional and hollow cathode magnetron sputtering systems. ECS Trans. 2009, 23, 143–148. [Google Scholar] [CrossRef]
- Musschoot, J.; Haemers, J. Qualitative model of the magnetron discharge. Vacuum 2009, 84, 488–493. [Google Scholar] [CrossRef]
- Berggren, L.; Jonsson, J.C.; Niklasson, G.A. Optical absorption in lithiated tungsten oxide thin films: Experiment and theory. J. Appl. Phys. 2007, 102, 083538. [Google Scholar] [CrossRef]
- Mohamed, S.H.; Mohamed, H.A.; Abd El Ghani, H.A. Development of structural and optical properties of WOx films upon increasing oxygen partial pressure during reactive sputtering. Phys. B Condens. Matter. 2011, 406, 831–835. [Google Scholar] [CrossRef]
- Berggren, L.; Niklasson, G.A. Optical absorption and durability of sputtered amorphous tungsten oxide films. Solid State Ion. 2003, 165, 51–58. [Google Scholar] [CrossRef]
- Sundberg, M.; Zakharov, N.D.; Zibrov, I.P.; Barabanenkov, Y.A.; Filonenko, V.P.; Werner, P. Two high-pressure tungsten oxide structures of W3O8 stoichiometry deduced from high-resolution electron microscopy images. Acta Crystallogr. Sect. B Struct. Sci. 1993, 49, 951–958. [Google Scholar] [CrossRef]
- Frey, G.L.; Rothschild, A.; Sloan, J.; Rosentsveig, R.; Popovitz-Biro, R.; Tenne, R. Investigations of nonstoichiometric tungsten oxide nanoparticles. J. Solid State Chem. 2001, 162, 300–314. [Google Scholar] [CrossRef]
- Tang, X.; Huang, J.; Liao, H.; Chen, G.; Mo, Z.; Ma, D.; Zhan, R.; Li, Y.; Luo, J. Growth of W18O49/WOx/W dendritic nanostructures by one-step thermal evaporation and their high-performance photocatalytic activities in methyl orange degradation. CrystEngComm 2019, 21, 5905–5914. [Google Scholar] [CrossRef]
- Guillén, C.; Herrero, J. Amorphous WO3−x thin films with color characteristics tuned by the oxygen vacancies created during reactive DC sputtering. J. Mater. Sci. Technol. 2021, 78, 223–228. [Google Scholar] [CrossRef]
- Kim, W.M.; Kim, J.S.; Jeong, J.H.; Park, J.K.; Baik, Y.J.; Seong, T.Y. Analysis of optical band-gap shift in impurity doped ZnO thin films by using nonparabolic conduction band parameters. Thin Solid Films 2013, 531, 430–435. [Google Scholar] [CrossRef]
- Thummavichai, K.; Xia, Y.; Zhu, Y. Recent progress in chromogenic research of tungsten oxides towards energy-related applications. Prog. Mater. Sci. 2017, 88, 281–324. [Google Scholar] [CrossRef]
- Wang, F.; Di Valentin, C.; Pacchioni, G. Semiconductor-to-metal transition in WO3−x: Nature of the oxygen vacancy. Phys. Rev. B. Condens. Matter Mater. Phys. 2011, 84, 073103. [Google Scholar] [CrossRef]
- Verma, M.; Singh, K.P.; Kumar, A. Reactive magnetron sputtering based synthesis of WO3 nanoparticles and their use for the photocatalytic degradation of dyes. Solid State Sci. 2020, 99, 105847. [Google Scholar] [CrossRef]
- De Wijs, G.A.; De Groot, R.A. Structure and electronic properties of amorphous WO3. Phys. Rev. B 1999, 60, 16463–16474. [Google Scholar] [CrossRef]
- Choudhury, B.; Choudhury, A. Oxygen defect dependent variation of band gap, Urbach energy and luminescence property of anatase, anatase–rutile mixed phase and of rutile phases of TiO2 nanoparticles. Phys. E Low-Dimens. Syst. Nanostructures 2014, 56, 364–371. [Google Scholar] [CrossRef]
- Demiryont, H.; Nietering, K.E. Tungsten oxide films by reactive and conventional evaporation techniques. Appl. Opt. 1989, 28, 1494. [Google Scholar] [CrossRef] [PubMed]
- Charles, C.; Martin, N.; Devel, M.; Ollitrault, J.; Billard, A. Correlation between structural and optical properties of WO3 thin films sputter deposited by glancing angle deposition. Thin Solid Films 2013, 534, 275–281. [Google Scholar] [CrossRef]
Deposition Parameters | Atomic Composition | Structural Properties | Optical Properties | Electrical Properties | ||
---|---|---|---|---|---|---|
P (W/cm2) | Opp (%) | O/W (at%) | XRD Data | Eg (eV) | EU (eV) | σ (S/cm) |
1 | 5 | 2.60 | amorphous | metallic | 1.79 | 1.45 × 101 |
1 | 10 | 2.80 | amorphous | 3.72 | 0.29 | 7.85 × 10−4 |
1 | 15 | 2.98 | amorphous | 3.71 | 0.19 | 1.10 × 10−4 |
2 | 10 | 2.58 | amorphous | metallic | 1.57 | 1.05 × 101 |
2 | 20 | 2.82 | Orthorhombic WO3 & W3O8 | 3.47 | 0.21 | 9.10 × 10−4 |
2 | 30 | 2.98 | Monoclinic WO3 &W18O49 | 3.45 | 0.18 | 1.20 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guillén, C. Polycrystalline WO3−x Thin Films Obtained by Reactive DC Sputtering at Room Temperature. Materials 2023, 16, 1359. https://doi.org/10.3390/ma16041359
Guillén C. Polycrystalline WO3−x Thin Films Obtained by Reactive DC Sputtering at Room Temperature. Materials. 2023; 16(4):1359. https://doi.org/10.3390/ma16041359
Chicago/Turabian StyleGuillén, Cecilia. 2023. "Polycrystalline WO3−x Thin Films Obtained by Reactive DC Sputtering at Room Temperature" Materials 16, no. 4: 1359. https://doi.org/10.3390/ma16041359
APA StyleGuillén, C. (2023). Polycrystalline WO3−x Thin Films Obtained by Reactive DC Sputtering at Room Temperature. Materials, 16(4), 1359. https://doi.org/10.3390/ma16041359