Response of Bilayer and Trilayer Graphene to High-Energy Heavy Ion Irradiation
Abstract
1. Introduction
2. Experimental Details
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akcöltekin, S.; Bukowska, H.; Peters, T.; Osmani, O.; Monnet, I.; Alzaher, I.; Ban-d’Etat, B.; Lebius, H.; Schleberger, M. Unzipping and folding of graphene by swift heavy ions. Appl. Phys. Lett. 2011, 98, 103103. [Google Scholar] [CrossRef]
- Ochedowski, O.; Lehtinen, O.; Kaiser, U.; Turchanin, A.; Ban-d’Etat, B.; Lebius, H.; Karlušić, M.; Jakšić, M.; Schleberger, M. Nanostructuring Graphene by Dense Electronic Excitation. Nanotechnology 2015, 26, 465302. [Google Scholar] [CrossRef] [PubMed]
- Madauß, L.; Schumacher, J.; Ghosh, M.; Ochedowski, O.; Meyer, J.; Lebius, H.; Ban-d’Etat, B.; Tomil-Molares, M.E.; Trautmann, C.; Lammertink, R.G.H.; et al. Fabrication of Nanoporous Graphene/Polymer Composite Membranes. Nanoscale 2017, 9, 10487. [Google Scholar] [CrossRef] [PubMed]
- Schleberger, M.; Kotakoski, J. 2D Material Science: Defect Engineering by Particle Irradiation. Materials 2018, 11, 1885. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite. Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Das, A.; Pisana, S.; Chakraboty, B.; Piscanec, S.; Saha, S.K.; Waghmare, U.V.; Novoselov, K.S.; Krishnamurthy, H.R.; Geim, A.K.; Ferrari, A.K.; et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210. [Google Scholar] [CrossRef]
- Mohiuddin, T.M.G.; Lombardo, A.; Nair, R.R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D.M.; Galiotis, C.; Marzari, N.; et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 2009, 79, 205433. [Google Scholar] [CrossRef]
- Lucchese, M.M.; Stavale, F.; Ferreira, E.H.M.; Vilani, C.; Moutinho, M.V.O.; Capaz, R.B.; Achete, C.A.; Jorio, A. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 2010, 48, 1592–1597. [Google Scholar] [CrossRef]
- Eckmann, A.; Felten, A.; Mischenko, A.; Britnell, L.; Krupke, R.; Novoselov, K.S.; Casiraghi, C. Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Lett. 2012, 12, 3925–3930. [Google Scholar] [CrossRef]
- Jorio, A.; Lucchese, M.M.; Stavale, F.; Martins Ferreira, E.H.; Moutinho, M.V.O.; Capaz, R.B.; Achete, C.A. Raman study of ion-induced defects in N-layer graphene. J. Phys. Condens. Matter 2010, 22, 334204. [Google Scholar] [CrossRef]
- Matthew, S.; Chan, T.K.; Zhan, D.; Gopinadhan, K.; Barman, A.-R.; Breese, M.B.H.; Dhar, S.; Shen, Z.X.; Venkatesan, T.; Thong, J.T.L. The effect of layer number and substrate on the stability of graphene under MeV proton beam irradiation. Carbon 2011, 49, 1720–1726. [Google Scholar] [CrossRef]
- Matthew, S.; Chan, T.K.; Zhan, D.; Gopinadhan, K.; Barman, A.R.; Breese, M.B.H.; Dhar, S.; Shen, Z.X.; Venkatesan, T.; Thong, J.T.L. Mega-electron-volt proton irradiation on supported and suspended graphene: A Raman spectroscopic layer dependent study. J. Appl. Phys. 2011, 110, 084309. [Google Scholar] [CrossRef]
- Li, W.; Wang, X.; Zhang, X.; Zhao, S.; Duan, H.; Xue, J. Mechanism of the Defect Formation in Supported Graphene by Energetic Heavy Ion Irradiation: The Substrate Effect. Sci. Rep. 2015, 5, 9935. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, J.; Yao, H.J.; Zhai, P.F.; Zhang, S.X.; Guo, H.; Hu, P.P.; Duan, J.L.; Mo, D.; Hou, M.D.; et al. Comparative study of irradiation effects in graphite and graphene. Carbon 2016, 100, 16–26. [Google Scholar] [CrossRef]
- Gawlik, G.; Ciepielewski, P.; Jagielski, J.; Baranowski, J.M. Modification of graphene by ion beam. Nucl. Instrum. Methods Phys. Res. Sect. B 2017, 406, 683–688. [Google Scholar] [CrossRef]
- Vázquez, H.; Ahlgren, E.H.; Ochedowski, O.; Leino, A.A.; Mirzayev, R.; Kozubek, R.; Lebius, H.; Karlušić, M.; Jakšić, M.; Krasheninnikov, A.V.; et al. Creating nanoporous graphene with swift heavy ions. Carbon 2017, 114, 511. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A.; Tripathi, A.; Tyagi, C.; Avasthi, D.K. Engineering of electronic properties of single layer graphene by swift heavy ion irradiation. J. Appl. Phys. 2018, 123, 161533. [Google Scholar] [CrossRef]
- Gawlik, G.; Ciepielewski, P.; Baranowski, J.M. Study of Implantation Defects in CVD Graphene by Optical and Electrical Methods. Appl. Sci. 2019, 9, 544. [Google Scholar] [CrossRef]
- Martins Ferreira, E.H.; Moutinho, M.V.O.; Stavale, F.; Luchese, M.M.; Capaz, R.B.; Achete, C.A.; Jorio, A. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys. Rev. B 2010, 82, 125429. [Google Scholar] [CrossRef]
- Hopster, J.; Kozubek, R.; Ban-d’Etat, B.; Guillous, S.; Lebius, H.; Schleberger, M. Damage in graphene due to electronic excitation induced by highly charged ions. 2D Mater. 2014, 1, 011011. [Google Scholar] [CrossRef]
- Giro, N.; Archanjo, B.S.; Martins Ferreira, E.H.; Capaz, R.B.; Jorio, A.; Achete, C.A. Quantifying defects in N-layer graphene via a phenomenological model. Nucl. Instrum. Methods Phys. Res. Sect. B 2014, 319, 71–74. [Google Scholar] [CrossRef]
- Kumar, S.; Tripathi, A.; Khan, S.A.; Pannu, C.; Avasthi, D.K. Radiation stability of graphene under extreme conditions. Appl. Phys. Lett. 2014, 105, 133107. [Google Scholar] [CrossRef]
- Nebogatikova, N.A.; Antonova, I.A.; Erohin, S.V.; Kvashnin, D.G.; Olejniczak, O.; Volodin, V.A.; Skuratov, V.A.; Krasheninnikov, A.V.; Sorokin, P.B.; Chernozatonskii, L.A. Nanostructuring few-layer graphene films with swift heavy ions for electronic application. Nanoscale 2018, 10, 14499. [Google Scholar] [CrossRef] [PubMed]
- Iveković, D.; Žugec, P.; Karlušić, M. Energy Retention in Thin Graphite Targets after Energetic Ion Impact. Materials 2021, 14, 6289. [Google Scholar] [CrossRef] [PubMed]
- Tomić Luketić, K.; Hanžek, J.; Mihalcea, C.G.; Dubček, P.; Gajović, A.; Siketić, Z.; Jakšić, M.; Ghica, C.; Karlušić, M. Charge State Effects in Swift-Heavy-Ion-Irradiated Nanomaterials. Crystals 2022, 12, 865. [Google Scholar] [CrossRef]
- Tsukagoshi, A.; Honda, S.; Osugi, R.; Okada, H.; Niibe, M.; Terasawa, M.; Hirase, R.; Izumi, H.; Yoshioka, H.; Niwase, K.; et al. Spectroscopic characterization of ion-irradiated multi-layer graphenes. Nucl. Instrum. Methods Phys. Res. Sect. B 2013, 315, 64–67. [Google Scholar] [CrossRef]
- Antonova, I.V.; Nebogatikova, N.A.; Erohin, S.V.; Prenas, V.A.; Smovzh, D.V.; Suprun, E.A.; Volodin, V.A.; Olejniczak, A.; Sorokin, P.B. Nanostructuring of CVD graphene by high-energy heavy ions. Diam. Relat. Mater. 2022, 123, 108880. [Google Scholar] [CrossRef]
- Krasheninnikov, A.V. Are two-dimensional materials radiation tolerant? Nanoscale Horiz. 2020, 5, 1447–1452. [Google Scholar] [CrossRef]
- Kumar, S.; Tripathi, A.; Fouran, S.; Khan, S.A.; Baranwal, V.; Avasthi, D.K. Purification/annealing of graphene with 100-MeV Ag ion irradiation. Nanoscale Res. Lett. 2014, 9, 126. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The stopping and range of the ions in matter. Nucl. Instrum. Methods Phys. Res. Sect. B 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Karlušić, M.; Mičetić, M.; Kresić, M.; Jakšić, M.; Šantić, B.; Bogdanović-Radović, I.; Bernstorff, S.; Lebius, H.; Ban-d’Etat, B.; Žužek Rožman, K.; et al. Nanopatterning surfaces by grazing swift heavy ion irradiation. Appl. Surf. Sci. 2021, 541, 148467. [Google Scholar] [CrossRef]
- Karlušić, M.; Rymzhanov, R.A.; O’Connell, J.H.; Bröckers, L.; Tomić Luketić, K.; Siketić, Z.; Fazinić, S.; Dubček, P.; Jakšić, M.; Provatas, G.; et al. Mechanisms of surface nanostructuring of Al2O3 and MgO by grazing incidence irradiation with swift heavy ions. Surf. Interfaces 2021, 27, 101508. [Google Scholar] [CrossRef]
- Rymzhanov, R.; Medvedev, N.; Volkov, A. Damage kinetics induced by swift heavy ion impacts onto films of different thicknesses. Appl. Surf. Sci. 2021, 566, 150640. [Google Scholar] [CrossRef]
- Vázquez, H.; Kononov, A.; Kyritsakis, A.; Medvedev, N.; Schleife, A.; Djurabekova, F. Electron cascades and secondary electron emission in graphene under energetic ion irradiation. Phys. Rev. B 2021, 103, 224306. [Google Scholar] [CrossRef]
- Jakšić, M.; Bogdanović Radović, I.; Bogovac, M.; Desnica, V.; Fazinić, S.; Karlušić, M.; Medunić, Z.; Muto, H.; Pastuović, Ž.; Siketić, Z.; et al. New capabilities of the Zagreb ion microbeam system. Nucl. Instrum. Methods Phys. Res. Sect. B 2007, 260, 114–118. [Google Scholar] [CrossRef]
- Siketić, Z.; Bogdanović-Radović, I.; Jakšić, M.; Skukan, N. Time of flight elastic recoil detection analysis with a position sensitive detector. Rev. Sci. Instrum. 2010, 81, 033305. [Google Scholar] [CrossRef]
- Maguire, P.; Fox, D.S.; Zhou, Y.; Wang, Q.; O’Brien, M.; Jadwiszczak, J.; Cullen, C.P.; McManus, J.; Bateman, S.; McEvoy, N.; et al. Defect sizing, separation, and substrate effects in ion-irradiated monolayer two-dimensional materials. Phys. Rev. B 2018, 98, 134109. [Google Scholar] [CrossRef]
- Lang, M.; Lian, J.; Zhang, J.; Zhang, F.; Weber, W.J.; Trautmann, C.; Ewing, R.C. Single-ion tracks in Gd2Zr2−xTixO7 pyrochlores irradiated with swift heavy ions. Phys. Rev. B 2009, 79, 224105. [Google Scholar] [CrossRef]
- Khalfaoui, N.; Rotaru, C.C.; Bouffard, S.; Toulemonde, M.; Stoquert, J.P.; Haas, F.; Trautmann, C.; Jensen, J.; Dunlop, A. Characterization of swift heavy ion tracks in CaF2 by scanning force and transmission electron microscopy. Nucl. Instrum. Methods Phys. Res. Sect. B 2005, 240, 819–828. [Google Scholar] [CrossRef]
- Liu, J.; Neumann, R.; Trautmann, R.; Müller, C. Tracks of swift heavy ions in graphite studied by scanning tunneling microscopy. Phys. Rev. B 2001, 64, 184115. [Google Scholar] [CrossRef]
- Tomić Luketić, K.; Karlušić, M.; Gajović, A.; Fazinić, S.; O’Connell, J.H.; Pielić, B.; Radatović, B.; Kralj, M. Investigation of Ion Irradiation Effects in Silicon and Graphite Produced by 23 MeV I Beam. Materials 2021, 14, 1904. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Sahajwalla, V.; Yoshimura, M.; Joshi, R.K. Graphene and graphene oxide for desalination. Nanoscale 2016, 8, 117–119. [Google Scholar]
- Zhang, H.; Zheng, Y.; Yu, S.; Chen, W.; Yang, J. A Review of Advancing Two-Dimensional Material Membranes for Ultrafast and Highly Selective Liquid Separation. Nanomaterials 2022, 12, 2103. [Google Scholar] [CrossRef] [PubMed]
- Wang, l.; Boutilier, M.S.H.; Kidambi, P.R.; Jang, D.; Hadjiconstantinou, N.G.; Karnik, R. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat. Nanotechnol. 2017, 12, 509–522. [Google Scholar] [CrossRef]
- Liu, J.; Jin, L.; Allen, F.I.; Gao, Y.; Ci, P.; Kang, F.; Wu, J. Selective Gas Permeation in Defect-Engineered Bilayer Graphene. Nano Lett. 2021, 21, 2183–2190. [Google Scholar] [CrossRef]
- Wu, X.; Yang, R.; Chen, X.; Liu, W. Fabrication of Nanopore in MoS2-Graphene vdW Heterostructure by Ion Beam Irradiation and the Mechanical Performance. Nanomaterials 2022, 12, 196. [Google Scholar] [CrossRef]
- Su, S.; Xue, J. Facile Fabrication of Subnanopores in Graphene under Ion Irradiation. ACS Appl. Mater. Interfaces 2021, 13, 12366–12374. [Google Scholar] [CrossRef]
Ion Beam | dEe/dx (keV/nm) | dEn/dx (keV/nm) | Ion Range (μm) |
---|---|---|---|
1.8 MeV I2+ | 1.797 | 1.355 | 0.55 |
23 MeV I6+ | 6.724 | 0.271 | 5.55 |
3 MeV Cu2+ | 2.054 | 0.251 | 1.7 |
18 MeV Cu6+ | 6.680 | 0.007 | 5.04 |
12 MeV Si4+ | 4.370 | 0.001 | 4.12 |
rs (nm) | ra (nm) | ra − rs (nm) | P (%) | |
---|---|---|---|---|
BLG | ||||
1.8 MeV I2+ | 0.8 | 1.35 | 0.55 | 7.6 |
23 MeV I6+ | 0.62 | 1.1 | 0.48 | 5.8 |
3 MeV Cu2+ | 0.7 | 1.1 | 0.4 | 4 |
18 MeV Cu6+ | 0.66 | 0.85 | 0.19 | 0.9 |
12 MeV Si4+ | 1.26 | 1.4 | 0.14 | 0.5 |
TLG | ||||
1.8 MeV I2+ | 0.75 | 1.4 | 0.65 | 10.6 |
23 MeV I6+ | 0.75 | 1.1 | 0.35 | 3.1 |
3 MeV Cu2+ | 0.65 | 0.95 | 0.3 | 2.3 |
18 MeV Cu6+ | 0.66 | 0.85 | 0.19 | 0.9 |
12 MeV Si4+ | 1.2 | 1.3 | 0.1 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iveković, D.; Kumar, S.; Gajović, A.; Čižmar, T.; Karlušić, M. Response of Bilayer and Trilayer Graphene to High-Energy Heavy Ion Irradiation. Materials 2023, 16, 1332. https://doi.org/10.3390/ma16041332
Iveković D, Kumar S, Gajović A, Čižmar T, Karlušić M. Response of Bilayer and Trilayer Graphene to High-Energy Heavy Ion Irradiation. Materials. 2023; 16(4):1332. https://doi.org/10.3390/ma16041332
Chicago/Turabian StyleIveković, Damjan, Sunil Kumar, Andrea Gajović, Tihana Čižmar, and Marko Karlušić. 2023. "Response of Bilayer and Trilayer Graphene to High-Energy Heavy Ion Irradiation" Materials 16, no. 4: 1332. https://doi.org/10.3390/ma16041332
APA StyleIveković, D., Kumar, S., Gajović, A., Čižmar, T., & Karlušić, M. (2023). Response of Bilayer and Trilayer Graphene to High-Energy Heavy Ion Irradiation. Materials, 16(4), 1332. https://doi.org/10.3390/ma16041332