Enhanced Emission of Tellurite Glass Doped with Pr3+/Ho3+ and Their Applications
Abstract
:1. Introduction
2. Experimental Work
Shielding Properties
3. Results and Discussion
3.1. Absorption Spectra and Judd–Ofelt Analysis
3.2. Emission Spectra
3.3. Lifetime
3.4. 5I8→5I6 Transition
3.5. Shielding Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rivera, V.A.G.; Manzani, D. (Eds.) Technological Advances in Tellurite Glasses; Springer Series in Materials Science; Springer International Publishing: New York, NY, USA, 2017. [Google Scholar]
- EI-Mallawany, R. (Ed.) Tellurite Glass Smart Materials, Applications in Optics and Beyond, Shielding Properties of Tellurite Glasses, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 17–28. ISBN 9783319765679. [Google Scholar] [CrossRef]
- Zhou, B.; Pun, E.Y.B.; Lin, H.; Yang, D.; Huang, L. Judd–Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses. J. Appl. Phys. 2009, 106, 103105. [Google Scholar] [CrossRef]
- Lisiecki, R.; Dominiak-Dzik, G.; Ryba-Romanowski, W.; Lukasiewicz, T. Conversion of infrared radiation into visible emission in YVO4 crystals doped with ytterbium and holmium. J. Appl. Phys. 2004, 94, 6323. [Google Scholar] [CrossRef]
- He, J.; Zhan, H.; Zhou, Z.; Zhang, A.; Lin, A. Study on 1.19 and 1.36 μm fluorescence for Ho-doped water-free fluorotellurite glasses. Opt. Commun. 2014, 320, 68–72. [Google Scholar] [CrossRef]
- Gavrilović, T.V.; Jovanović, D.J.; Trandafilović, L.V.; Dramićanin, M.D. Effects of Ho3+ and Yb3+ doping concentrations and Li+ co-doping on the luminescence of GdVO4 powders. Opt. Mater. 2015, 45, 76–81. [Google Scholar] [CrossRef]
- Pang, T.; Huang, Z. A novel upconverison phosphor Gd2Mo4O15: Yb3+, Ho3+: Intense red emission and ratiometric temperature sensing under 980 nm excitation. Mater. Res. Express 2018, 5, 066204. [Google Scholar] [CrossRef]
- Bordj, S.; Satha, H.; Barros, A.; Zambon, D.; Jouart, J.-P.; Diaf, M.; Mahiou, R. Spectroscopic characterization by up conversion of Ho3+/Yb3+ codoped CdF2 single crystal. Opt. Mater. 2021, 118, 111249. [Google Scholar] [CrossRef]
- Klimesz, B.; Lisiecki, R.; Ryba-Romanowski, W. Thermal, spectroscopic and optical sensor properties of oxyfluorotellurite glasses doped with holmium and ytterbium. Mater. Res. Bull. 2022, 153, 111909. [Google Scholar] [CrossRef]
- Kuwik, M.; Kowalska, K.; Pisarska, J.; Pisarski, W.A. Spectroscopic Properties of Pr3+, Tm3+, and Ho3+ in Germanate-Based Glass Systems Modified by TiO2. Materials 2023, 16, 61. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Li, C.; Zhu, L.; Zhao, D.; Li, J.; Zhou, Y. Pr3+/Tm3+/Er3+ tri-doped tellurite glass with ultra-broadband luminescence in the optical communication band. Ceram. Int. 2022, 48, 8779–8782. [Google Scholar] [CrossRef]
- Peng, J.; Xia, H.; Wang, P.; Hu, H.; Tang, L.; Zhang, Y.; Jiang, H.; Chen, B. Optical spectra and gain properties of Ho3+/Pr3+ co-doped LiYF4 crystal. J. Mater. Sci. Technol. 2014, 30, 910–916. [Google Scholar] [CrossRef]
- Chanthima, N.; Kaewkhao., J. Investigation on radiation shielding parameters of bismuth borosilicate glass from 1keV to 100GeV. Ann. Nucl. Energy 2013, 55, 23–28. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Kawa, M.K.; Gaikwad, D.K.; Agar, O.; Gawai, U.P.; Baki, S.O. Physical, structural, optical and gamma radiation shielding properties of borate glasses containing heavy metals (Bi2O3/MoO3). J. Non-Cryst. Solids 2019, 507, 30–37. [Google Scholar] [CrossRef]
- Al-Buriahi, M.S.; Rammah, Y.S. Electronic polarizability, dielectric, and gamma-ray shielding properties of some tellurite-based glasses. Appl. Phys. A 2019, 125, 1–9. [Google Scholar] [CrossRef]
- Al-Buriahi, M.S.; Mann, K.S. Radiation shielding investigations for selected tellurite-based glasses belonging to the TNW system. Mater. Res. Express 2019, 6, 105206. [Google Scholar] [CrossRef]
- Rammah, Y.S.; Al-Buriahi, M.S.; Abouhaswa, A.S. B2O3–BaCO3–Li2O3 glass system doped with Co3O4: Structure, optical, and radiation shielding properties. Phys. B Condens. Matter 2019, 576, 411717. [Google Scholar] [CrossRef]
- Sayyed, M.; Tekin, H.; Altunsoy, E.E.; Obaid, S.S.; Almatari, M. Radiation shielding study of tellurite tungsten glasses with different antimony oxide as transparent shielding materials using MCNPX code. J. Non-Cryst. Solids 2018, 498, 167–172. [Google Scholar] [CrossRef]
- Tijani, S.A.; Kamal, S.M.; Al-Hadeethi, Y.; Arib, M.; Hussein, M.A.; Wageh, S.; Dim, L.A. Radiation shielding properties of transparent erbium zinc tellurite glass system determined at medical diagnostic energies. J. Alloys Compd. 2018, 741, 293–299. [Google Scholar] [CrossRef]
- Chen, B.J.; Chen, L.F.; Pun, E.Y.B.; Lin, H. Sm3+ doped germanate glass channel waveguide as light source for minimally invasive photodynamic therapy surgery. Opt. Express 2012, 20, 879–889. [Google Scholar] [CrossRef]
- Yang, J.; Chen, B.J.; Pun, E.Y.B.; Zhai, B.; Lin, H. Pr3+-doped heavy metal germanium tellurite glasses for irradiative light source in minimally invasive photodynamic therapy surgery. Opt. Express 2013, 21, 1030–1040. [Google Scholar] [CrossRef]
- Yang, D.L.; Gong, H.; Pun, E.Y.B.; Zhao, X.; Lin, H. Rare-earth ions doped heavy metal germanium tellurite glasses for fiber lighting in minimally invasive surgery. Opt. Express 2010, 18, 18997–19008. [Google Scholar] [CrossRef]
- Elkhoshkhany, N.; Marzouk, S.; El–Sherbiny, M.; Atef, M.; Damak, K.; Alqahtani, M.S.; Algarni, H.; Reben, M.; Yousef, E.S. Spectroscopic properties in simple cost glasses with alkaline oxides doped with Sm2O3 for display laser emission. Results Phys. 2021, 31, 104955. [Google Scholar] [CrossRef]
- Burtan-Gwizdala, B.; Reben, M.; Cisowski, J.; Lisiecki, R.; Ryba-Romanowski, W.; Jarząbek, B.; Mazurak, Z.; Nosidlak, N.; Grelowska, I. The influence of Pr3+ content on luminescence and optical behavior of TeO2-WO3-PbO-Lu2O3 glass. Opt. Mater. 2015, 47, 231–236. [Google Scholar] [CrossRef]
- Hussein, K.; Alqahtani, M.; Algarni, H.; Zahran, H.; Yaha, I.; Grelowska, I.; Reben, M.; Yousef, E. MIKE: A new computational tool for investigating radiation, optical and physical properties of prototyped shielding materials. J. Instrum. 2021, 16, T07004. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Rammah, Y.S.; Laariedh, F.; Abouhaswa, A.S.; Badeche, T.-B. Effect of Bi2O3 on some optical and gamma-photon-shielding properties of new bismuth borate glasses. Appl. Phys. A 2019, 125, 649. [Google Scholar] [CrossRef]
- Tekin, H.; Altunsoy, E.; Kavaz, E.; Sayyed, M.; Agar, O.; Kamislioglu, M. Photon and neutron shielding performance of boron phosphate glasses for diagnostic radiology facilities. Results Phys. 2019, 12, 1457–1464. [Google Scholar] [CrossRef]
- Burtan-Gwizdala, B.; Reben, M.; Cisowski, J.; Lisiecki, R.; Nosidlak, N. Strong emission at 1000 nm from Pr3+/Yb3+-codoped multicomponent tellurite glass. Pure Appl. Chem. 2022, 94, 147–156. [Google Scholar] [CrossRef]
- Trindade, C.; Alves, R.; Silva, A.; Dantas, N.; Gouveia-Neto, A. Tunable greenish to reddish luminescence and two-way energy transfer in Ho3+ and Pr3+ doped TeO2:ZnO glass. Opt. Mater. 2020, 99, 109574. [Google Scholar] [CrossRef]
- Sobczyk, M.; Marek, Ł. Comparative study of optical properties of Ho3+ -doped RE2O3 Na2O-ZnO-TeO2 glasses. J. Lumin. 2019, 206, 308–318. [Google Scholar] [CrossRef]
- Tanimura, K.; Shinn, M.D.; Sibley, W.A. Optical transitions of Ho3+ ions in fluorozirconate glass. Phys. Rev. B 1984, 30, 2429–2437. [Google Scholar] [CrossRef]
- Rukmini, E.; Jayasankar, C.K. Spectroscopic properties of Ho3+ ions in zinc borosulphate glasses and comparative energy level analyses of Ho3+ ions in various glasses. Opt. Mater. 1995, 4, 529–546. [Google Scholar] [CrossRef]
- Georgescu, Ş.; Ştefan, A.; Toma, O.; Voiculescu, A.M. Judd–Ofelt analysis of Ho3+ doped in ceramic CaSc2O4. J. Lumin. 2015, 162, 174–179. [Google Scholar] [CrossRef]
- Vengala Rao, B.; Buddhudu, S. Emission analysis of Pr3+ & Ho3+: Ca4GdO(BO3)3 powder phosphors. J. Mater. Sci. 2008, 43, 233–236. [Google Scholar]
- Seshadri, M.; Barbosa, L.C.; Radha, M. Study on structural, optical and gain properties of 1.2 and 2.0 μm emission transitions in Ho3+ doped tellurite glasses. J. Non-Cryst. Solids 2014, 406, 62–72. [Google Scholar] [CrossRef]
- Ding, M.; Cui, S.; Fang, L.; Lin, Z.; Lu, C.; Yang, X. NIR-I-Responsive Single-Band Upconversion Emission through Energy Migration in Core–Shell–Shell Nanostructures. Angew. Chem. Int. Ed. 2022, 61, e202203631. [Google Scholar] [CrossRef]
- Mingye, D.; Bang, D.; Yi, L.; Xiaofei, Y.; Yongjun, Y.; Wangfeng, B.; Shiting, W.; Zhenguo, J.; Chunhua, L.; Kan, Z.; et al. Energy Manipulation in Lanthanide-Doped Core–Shell Nanoparticles for Tunable Dual-Mode Luminescence Toward Advanced Anti-Counterfeiting. Adv. Mater. 2020, 32, 2002121. [Google Scholar]
- Dong, B.; Yuan, Y.; Ding, M.; Bai, W.; Wu, S.; Ji, Z. Efficient dual-mode luminescence from lanthanide-doped core–shell nanoarchitecture for anti-counterfeiting applications. Nanotechnology 2020, 31, 365705. [Google Scholar] [CrossRef]
- Song, P.; Jiang, C. Modeling of downconverter based on Pr3+-Yb3+ codoped fluoride glasses to improve sc-Si solar cells efficiency. AIP Adv. 2012, 2, 042130. [Google Scholar] [CrossRef]
- Burtan-Gwizdala, B.; Manuela, R.; Cisowski, J.; Grelowska, I.; Algarni, H.; Lisiecki, R.; Nosidlak, N. Spectroscopic properties of Er3+-doped fluorotellurite glasses containing various modifiers. Opt. Mater. 2017, 73, 509–516. [Google Scholar] [CrossRef]
- SCHOTT Glass Made of Ideas. Available online: https://www.schott.com/advanced_optics/english/products/optical-materials/special-materials/radiation-shielding-glasses/index.html (accessed on 25 November 2022).
- Rammah, Y.S.; Mahmoud, K.A.; Kavaz, E.; Kumar, A.; El-Agawany, F.I. The role of PbO/Bi2O3 insertion on the shielding characteristics of novel borate glasses. Ceram. Int. 2020, 46, 23357–23368. [Google Scholar] [CrossRef]
- El-Agawany, F.I.; Tashlykov, O.L.; Mahmoud, K.A.; Rammah, Y.S. The radiation-shielding properties of ternary SiO2–SnO–SnF2 glasses: Simulation and theoretical study. Ceram. Int. 2020, 46, 23369–23378. [Google Scholar] [CrossRef]
- Kumar, A. Gamma ray shielding properties of PbO-Li2O-B2O3 glasses. Radiat. Phys. Chem. 2017, 136, 50–53. [Google Scholar] [CrossRef]
Sample Code | Glass Composition in Mol% | Molar Mass (g/mol) | Density (g/cm3) | NLn (1020 cm−3) |
---|---|---|---|---|
T0 | 78TeO2-10Nb2O5-5PbO-5Li2O-1La2O3-1PbF2 | 169.43 | 5.80 | - |
TPr | 78TeO2-10Nb2O5-5PbO-5Li2O-1La2O3-1PbF23-Pr2O3 | 171.85 | 5.93 | NPr = 6.30 |
TPrHo | 78TeO2-10Nb2O5-5PbO-5Li2O-1La2O3-1PbF2-1.5Pr2O3-1.5Ho2O3 | 172.04 | 5.94 | NPr = 3.16 NHo = 2.76 |
Transition from 5I8 to: | Energy (cm−1) | Oscillator Strength f (10−6) | |
---|---|---|---|
fexp | fcal | ||
5I6 | 8564 | 0.74 | 0.95 |
5I5 | 11,178 | 0.18 | 0.18 |
5F5 | 15,427 | 3.02 | 2.94 |
5S2+5F4 | 18,501 | 4.13 | 3.73 |
5G6 | 22,051 | 22.76 | 22.76 |
5G5 | 23,887 | 3.43 | 3.56 |
Ω2 = 3.24-, Ω4 = 1.64-, Ω6 = 1.10 × 10−20 cm2; δrms = 0.19 × 10−6 Ω2 = 6.72-, Ω4 = 2.21-, Ω6 = 8.74 × 10−20 cm2 [24] Ω2 = 1.24-, Ω4 = 7.00-, Ω6 = 2.80 × 10−20 cm2 [28] |
Sample Code | Pr3+ | Ho3+ and Pr3+ | |||
---|---|---|---|---|---|
3P0 Lifetime | (3F4+5S2) Lifetime | 5I6 Lifetime | |||
τeff (μs) | τrad (μs) | τeff (μs) | τrad (μs) | τrad (μs) | |
TPr | 2.47 [28] | 9.43 [28] | - | - | - |
TPrHo | 2.75 | 10.01 | 5.49 | 301 | 3.09 |
Shielding Parameters | T0 | TPr | TPrHo | RS253G18 | RS-360 | RS-520 |
---|---|---|---|---|---|---|
MAC (cm2/g−1) | 0.03377 | 0.03394 | 0.03400 | 0.02741 | 0.04080 | 0.04326 |
LAC (cm−1) | 0.19588 | 0.20125 | 0.20195 | 0.06907 | 0.14689 | 0.22493 |
HVL (cm) | 3.53793 | 3.44344 | 3.43155 | 10.03314 | 4.71772 | 3.08094 |
MFP (cm) | 5.10524 | 4.96889 | 4.95173 | 14.47783 | 6.80768 | 4.44580 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burtan-Gwizdala, B.; Reben, M.; Cisowski, J.; Lisiecki, R.; Jarząbek, B.; Alshehri, A.; Hussein, K.I.; Yousef, E.S. Enhanced Emission of Tellurite Glass Doped with Pr3+/Ho3+ and Their Applications. Materials 2023, 16, 925. https://doi.org/10.3390/ma16030925
Burtan-Gwizdala B, Reben M, Cisowski J, Lisiecki R, Jarząbek B, Alshehri A, Hussein KI, Yousef ES. Enhanced Emission of Tellurite Glass Doped with Pr3+/Ho3+ and Their Applications. Materials. 2023; 16(3):925. https://doi.org/10.3390/ma16030925
Chicago/Turabian StyleBurtan-Gwizdala, Bozena, Manuela Reben, Jan Cisowski, Radosław Lisiecki, Bożena Jarząbek, Ali Alshehri, Khalid I. Hussein, and El Sayed Yousef. 2023. "Enhanced Emission of Tellurite Glass Doped with Pr3+/Ho3+ and Their Applications" Materials 16, no. 3: 925. https://doi.org/10.3390/ma16030925
APA StyleBurtan-Gwizdala, B., Reben, M., Cisowski, J., Lisiecki, R., Jarząbek, B., Alshehri, A., Hussein, K. I., & Yousef, E. S. (2023). Enhanced Emission of Tellurite Glass Doped with Pr3+/Ho3+ and Their Applications. Materials, 16(3), 925. https://doi.org/10.3390/ma16030925