Polymer and Composite Materials in Two-Phase Passive Thermal Management Systems: A Review
Abstract
:1. Introduction
2. Polymer and Composite Materials
3. Polymer and Composite Materials in Two-Phase Passive Thermal Management Systems
3.1. Thermosyphons
3.2. Conventional Heat Pipes
3.3. Loop Heat Pipes/Capillary Pumped Loops
3.4. Pulsating Heat Pipes
4. Limitations of Polymer Materials
4.1. Thermal Conductivity
4.2. Permeability
4.3. Wettability
4.4. Viscoelasticity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PE | Polyethylene |
LDPE | Low density polyethylene |
HDPE | High density polyethylene |
PP | Polypropylene |
PVC | Poly(vinylchloride) |
PS | Polystyrene |
ABS | Acrylonitrile butadiene styrene |
PC | Polycarbonate |
PTFE | Polytetrafluoroethylene |
PES | Polyether sulfone |
POM | Polyoxymethylene |
PEEK | Polyether ether ketone |
PF | Phenol formaldehyde |
EPM | Ethylene-propylene monomer |
EPDM | Ethylene-propylene-diene monomer |
SIS | Styrene-isoprene-styrene |
SBS | Styrene-butadiene-styrene |
TS | Thermosyphon |
HP | Heat pipe |
LHP | Loop heat pipe |
CPL | Capillary pumped loop |
PHP | Pulsating heat pipe |
OHP | Oscillating heat pipe |
LED | Light-emitting diode |
RF | Radio frequency |
PCB | Printed circuit board |
LCP | Liquid crystal polymer |
LDPET | Low density polyethylene terephthalate |
PET | Polyethylene terephthalate |
UHMW-PE | Ultra-high-molecular-weight polyethylene |
PDMS | Polydimethylsiloxane |
References
- Kim, H.S.; Jang, J.U.; Lee, H.; Kim, S.Y.; Kim, S.H.; Kim, J.; Jung, Y.C.; Yang, B.J. Thermal Management in Polymer Composites: A Review of Physical and Structural Parameters. Adv. Eng. Mater. 2018, 20, 1800204. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, T.; Ma, A. Recent Advances in Design and Preparation of Polymer-Based Thermal Management Material. Polymers 2021, 13, 2797. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, G.; Xu, L.; Liao, J.; Zhang, X. Nanoporous boron nitride aerogel film and its smart composite with phase change materials. ACS Nano 2020, 14, 16590–16599. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, F.; Cheng, W.; Chen, X.; Zhao, Q. Study of using enhanced heat-transfer flexible phase change material film in thermal management of compact electronic device. Energy Convers. Manag. 2020, 210, 112680. [Google Scholar] [CrossRef]
- Li, C.; Li, J. Passive Cooling Solutions for High Power Server CPUs with Pulsating Heat Pipe Technology. Front. Energy Res. 2021, 9, 664. [Google Scholar] [CrossRef]
- Gibbons, M.J.; Marengo, M.; Persoons, T. A review of heat pipe technology for foldable electronic devices. Appl. Therm. Eng. 2021, 194, 117087. [Google Scholar] [CrossRef]
- Ruch, P.; Brunschwiler, T.; Escher, W.; Paredes, S.; Michel, B. Toward five-dimensional scaling: How density improves efficiency in future computers. IBM J. Res. Dev. 2011, 55, 15:1–15:13. [Google Scholar] [CrossRef]
- Vasiliev, L.L. Heat pipes in modern heat exchangers. Appl. Therm. Eng. 2005, 25, 1–19. [Google Scholar] [CrossRef]
- Zohuri, B. Heat Pipe Design and Technology: Modern Applications for Practical Thermal Management, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2016; p. 513. [Google Scholar] [CrossRef]
- Strobl, G. The physics of polymers; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar] [CrossRef]
- Saldívar-Guerra, E.; Vivaldo-Lima, E. Introduction to Polymers and Polymer Types. In Handbook of Polymer Synthesis, Characterization, and Processing; John Wiley & Sons: Hoboken, NJ, USA, 2013; Chapter 1; pp. 1–14. [Google Scholar] [CrossRef]
- Maqbool, M.; Aftab, W.; Bashir, A.; Usman, A.; Guo, H.; Bai, S. Engineering of polymer-based materials for thermal management solutions. Compos. Commun. 2022, 29, 101048. [Google Scholar] [CrossRef]
- Huang, C.; Qian, X.; Yang, R. Thermal conductivity of polymers and polymer nanocomposites. Mater. Sci. Eng. R Rep. 2018, 132, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Ginzburg, V.V.; Yang, J.; Yang, Y.; Liu, W.; Huang, Y.; Du, L.; Chen, B. Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 2016, 59, 41–85. [Google Scholar] [CrossRef]
- Lakes, R.; Lakes, R. Viscoelastic Materials; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Glade, H.; Moses, D.; Orth, T. Polymer Composite Heat Exchangers. In Innovative Heat Exchangers; Bart, H.J., Scholl, S., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 53–116. [Google Scholar] [CrossRef]
- Stern, S.A.; Fried, J.R. Permeability of Polymers to Gases and Vapors. In Physical Properties of Polymers Handbook; Mark, J.E., Ed.; Springer New York: New York, NY, USA, 2007; pp. 1033–1047. [Google Scholar] [CrossRef]
- Harvey, J.A. Chapter 7 - Chemical and physical aging of plastics. In Handbook of Environmental Degradation of Materials; Kutz, M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2005; pp. 153–163. [Google Scholar] [CrossRef]
- White, J.; De, S.K. Rubber Technologist’s Handbook; Rapra Technology Ltd.: Shewsbury, UK, 2001. [Google Scholar]
- Ghosh, A.K.; Dwivedi, M. Advantages and applications of polymeric composites. In Processability of Polymeric Composites; Springer: Berlin/Heidelberg, Germany, 2020; pp. 29–57. [Google Scholar]
- Liem, H.; Choy, H. Superior thermal conductivity of polymer nanocomposites by using graphene and boron nitride as fillers. Solid State Commun. 2013, 163, 41–45. [Google Scholar] [CrossRef]
- Xie, B.H.; Huang, X.; Zhang, G.J. High thermal conductive polyvinyl alcohol composites with hexagonal boron nitride microplatelets as fillers. Compos. Sci. Technol. 2013, 85, 98–103. [Google Scholar] [CrossRef]
- Mamunya, Y.P.; Davydenko, V.; Pissis, P.; Lebedev, E. Electrical and thermal conductivity of polymers filled with metal powders. Eur. Polym. J. 2002, 38, 1887–1897. [Google Scholar] [CrossRef]
- Krupa, I.; Novák, I.; Chodák, I. Electrically and thermally conductive polyethylene/graphite composites and their mechanical properties. Synth. Met. 2004, 145, 245–252. [Google Scholar] [CrossRef]
- Shahil, K.M.; Balandin, A.A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 2012, 12, 861–867. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Liu, T. A review on hybridization modification of graphene and its polymer nanocomposites. Chin. Sci. Bull. 2012, 57, 3010–3021. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Fina, A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog. Polym. Sci. 2011, 36, 914–944. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Kang, Q.; Pan, N. Thermal conductivity enhancement of carbon fiber composites. Appl. Therm. Eng. 2009, 29, 418–421. [Google Scholar] [CrossRef]
- Videira-Quintela, D.; Martin, O.; Montalvo, G. Recent advances in polymer-metallic composites for food packaging applications. Trends Food Sci. Technol. 2021, 109, 230–244. [Google Scholar] [CrossRef]
- Yoo, B.M.; Shin, H.J.; Yoon, H.W.; Park, H.B. Graphene and graphene oxide and their uses in barrier polymers. J. Appl. Polym. Sci. 2014, 131, 39628. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Lizundia, E.; Vilas, J.L.; Sangroniz, A.; Etxeberria, A. Light and gas barrier properties of PLLA/metallic nanoparticles composite films. Eur. Polym. J. 2017, 91, 10–20. [Google Scholar] [CrossRef]
- Wen, S.; Zhang, R.; Xu, Z.; Zheng, L.; Liu, L. Effect of the topology of carbon-based nanofillers on the filler networks and gas barrier properties of rubber composites. Materials 2020, 13, 5416. [Google Scholar] [CrossRef] [PubMed]
- Su, K.H.; Su, C.; Cho, C.T.; Lin, C.H.; Jhou, G.F.; Chang, C.C. Development of Thermally Conductive Polyurethane Composite by Low Filler Loading of Spherical BN/PMMA Composite Powder. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hill, R.F.; Supancic, P.H. Determination of the thermal resistance of the polymer–ceramic interface of alumina-filled polymer composites. J. Am. Ceram. Soc. 2004, 87, 1831–1835. [Google Scholar] [CrossRef]
- Lee, W.; Han, I.; Yu, J.; Kim, S.; Byun, K. Thermal characterization of thermally conductive underfill for a flip-chip package using novel temperature sensing technique. Thermochim. Acta 2007, 455, 148–155. [Google Scholar] [CrossRef]
- Yu, S.; Hing, P.; Hu, X. Thermal conductivity of polystyrene-aluminum nitride composite. Compos. Part A Appl. Sci. Manuf. 2002, 33, 289–292. [Google Scholar] [CrossRef]
- Pezzotti, G.; Kamada, I.; Miki, S. Thermal conductivity of AlN/polystyrene interpenetrating networks. J. Eur. Ceram. Soc. 2000, 20, 1197–1203. [Google Scholar] [CrossRef]
- Morelli, D.; Heremans, J. Thermal conductivity of germanium, silicon, and carbon nitrides. Appl. Phys. Lett. 2002, 81, 5126–5128. [Google Scholar] [CrossRef]
- Azeem, M.; Jan, R.; Farrukh, S.; Hussain, A. Improving gas barrier properties with boron nitride nanosheets in polymer-composites. Results Phys. 2019, 12, 1535–1541. [Google Scholar] [CrossRef]
- Biron, M. Chapter 6—Thermoplastic Composites. In Thermoplastics and Thermoplastic Composites, 3rd ed.; Biron, M., Ed.; Plastics Design Library, William Andrew Publishing: Norwich, NY, USA, 2018; pp. 821–882. [Google Scholar] [CrossRef]
- Moumen, A.E.; Tarfaoui, M.; Lafdi, K. Additive manufacturing of polymer composites: Processing and modeling approaches. Compos. Part B Eng. 2019, 171, 166–182. [Google Scholar] [CrossRef]
- Chohan, J.S.; Boparai, K.S.; Singh, R.; Hashmi, M. Manufacturing techniques and applications of polymer matrix composites: A brief review. Adv. Mater. Process. Technol. 2020, 8, 884–894. [Google Scholar] [CrossRef]
- Chi, S. Heat Pipe Theory and Practice: A Sourcebook; McGraw-Hill: New York, NY, USA, 1976. [Google Scholar]
- Bejan, A.; Kraus, A.D. Heat Transfer Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2003; Volume 1. [Google Scholar]
- Messaoud, B.; Aidoun, Z.; Eslami-nejad, P.; Blessent, D. Ground-Coupled Natural Circulating Devices (Thermosiphons): A Review of Modeling, Experimental and Development Studies. Inventions 2019, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Jumeau, J. Little history of water circulating heaters and storage heater. In History of Technologies Linked to Heating; Ultimheat Museum: Quincy-Voisins, France, 2010; Chapter 4. [Google Scholar]
- El-Genk, M.; Saber, H. Heat transfer correlations for liquid film in the evaporator of enclosed, gravity-assisted thermosyphons. J. Heat Transf. (Trans. ASME) 1998, 120, 477–484. [Google Scholar] [CrossRef]
- Lamaison, N.; Ong, C.L.; Marcinichen, J.B.; Thome, J.R. Two-phase mini-thermosyphon electronics cooling: Dynamic modeling, experimental validation and application to 2U servers. Appl. Therm. Eng. 2017, 110, 481–494. [Google Scholar] [CrossRef]
- Oliveira, J.; Tecchio, C.; Paiva, K.; Mantelli, M.; Gandolfi, R.; Ribeiro, L. In-flight testing of loop thermosyphons for aircraft cooling. Appl. Therm. Eng. 2016, 98, 144–156. [Google Scholar] [CrossRef]
- Nithyanandam, K.; Pitchumani, R. Thermal energy storage with heat transfer augmentation using thermosyphons. Int. J. Heat Mass Transf. 2013, 67, 281–294. [Google Scholar] [CrossRef]
- Ersöz, M.A. Effects of different working fluid use on the energy and exergy performance for evacuated tube solar collector with thermosyphon heat pipe. Renew. Energy 2016, 96, 244–256. [Google Scholar] [CrossRef]
- Ziapour, B.M.; Khalili, M.B. PVT type of the two-phase loop mini tube thermosyphon solar water heater. Energy Convers. Manag. 2016, 129, 54–61. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, B.; Wu, W.; Shi, W.; Li, X. Heat recovery from Internet data centers for space heating based on an integrated air conditioner with thermosyphon. Renew. Energy 2015, 80, 396–406. [Google Scholar] [CrossRef]
- Matsubara, K.; Nakakura, M.; Bellan, S.; Maezawa, K. Loop thermosiphon thermal collector for waste heat recovery power generation. Exp. Heat Transf. 2019, 32, 201–218. [Google Scholar] [CrossRef]
- Zhang, H.; Shao, S.; Tian, C.; Zhang, K. A review on thermosyphon and its integrated system with vapor compression for free cooling of data centers. Renew. Sustain. Energy Rev. 2018, 81, 789–798. [Google Scholar] [CrossRef]
- Cao, J.; Zheng, Z.; Asim, M.; Hu, M.; Wang, Q.; Su, Y.; Pei, G.; Leung, M.K. A review on independent and integrated/coupled two-phase loop thermosyphons. Appl. Energy 2020, 280, 115885. [Google Scholar] [CrossRef]
- Jafari, D.; Franco, A.; Filippeschi, S.; Di Marco, P. Two-phase closed thermosyphons: A review of studies and solar applications. Renew. Sustain. Energy Rev. 2016, 53, 575–593. [Google Scholar] [CrossRef]
- Gernert, N.J.; Donovan, K.G. Unfurlable Radiator for Lunar Base Heat Rejection. SAE Trans. 1994, 103, 689–698. [Google Scholar]
- Sukchana, T.; Pratinthong, N. Effect of bending position on heat transfer performance of R-134a two-phase close loop thermosyphon with an adiabatic section using flexible hoses. Int. J. Heat Mass Transf. 2017, 114, 527–535. [Google Scholar] [CrossRef]
- Sukchana, T.; Pratinthong, N. A two-phase closed thermosyphon with an adiabatic section using a flexible hose and R-134a filling. Exp. Therm. Fluid Sci. 2016, 77, 317–326. [Google Scholar] [CrossRef]
- Grakovich, L.P.; Rabetskii, M.I.; Vasiliev, L.L.; Leonid, L.; Vasiliev, J.; Bogdanovich, S.P.; Pesetskii, S.S. Polymer flat loop thermosyphons. Heat Pipe Sci. Technol. Int. J. 2014, 5, 145–152. [Google Scholar] [CrossRef]
- Vasiliev, L.; Vassiliev, L. Heat Pipes and Nanotechnologies. In Microscale and Nanoscale Heat Transfer: Analysis, Design, and Application; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Chen, B.R.; Changa, Y.W.; Leeb, W.S.; Chen, S.L. Long-term thermal performance of a two-phase thermosyphon solar water heater. Sol. Energy 2009, 83, 1048–1055. [Google Scholar] [CrossRef]
- Garrity, P.T.; Klausner, J.F.; Mei, R. Instability phenomena in a two-phase microchannel thermosyphon. Int. J. Heat Mass Transf. 2009, 52, 1701–1708. [Google Scholar] [CrossRef]
- Khodabandeh, R.; Furberg, R. Instability, heat transfer and flow regime in a two-phase flow thermosyphon loop at different diameter evaporator channel. Appl. Therm. Eng. 2010, 30, 1107–1114. [Google Scholar] [CrossRef]
- He, Y.; Hu, C.; Li, H.; Hu, X.; Tang, D. Visualized-experimental investigation on a mini-diameter loop thermosyphon with a wide range of filling ratios. Int. Commun. Heat Mass Transf. 2022, 133, 105973. [Google Scholar] [CrossRef]
- Voirand, A.; Lips, S.; Sartre, V. Heat transfer and flow visualizations in a flat confined two-phase thermosyphon. Int. J. Heat Mass Transf. 2020, 148, 119056. [Google Scholar] [CrossRef]
- Gaugler, R.S. Heat Transfer Device. U.S. Patent 2,350,348 A, 6 June 1942. [Google Scholar]
- Grover, G.M. Evaporation-Condensation Heat Transfer Device. U.S. Patent 3,229,759, 18 January 1966. [Google Scholar]
- Yadavalli, Y.; Weibel, J.A.; Garimella, S.V. Performance-governing transport mechanisms for heat pipes at ultrathin form factors. IEEE Trans. Components Packag. Manuf. Technol. 2015, 5, 1618–1627. [Google Scholar] [CrossRef] [Green Version]
- Feng, C.; Gibbons, M.; Marengo, M.; Chandra, S. A novel ultra-large flat plate heat pipe manufactured by thermal spray. Appl. Therm. Eng. 2020, 171, 115030. [Google Scholar] [CrossRef]
- Tang, H.; Tang, Y.; Wan, Z.; Li, J.; Yuan, W.; Lu, L.; Li, Y.; Tang, K. Review of applications and developments of ultra-thin micro heat pipes for electronic cooling. Appl. Energy 2018, 223, 383–400. [Google Scholar] [CrossRef]
- Chen, X.; Ye, H.; Fan, X.; Ren, T.; Zhang, G. A review of small heat pipes for electronics. Appl. Therm. Eng. 2016, 96, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Ling, L.; Zhang, Q.; Yu, Y.; Liao, S. A state-of-the-art review on the application of heat pipe system in data centers. Appl. Therm. Eng. 2021, 199, 117618. [Google Scholar] [CrossRef]
- Shewale, S.P.; Sahu, S.K.; Chougule, S.S.; Pise, A.T. A review of heat pipe with nanofluid for electronic cooling. In Proceedings of the 2014 International Conference on Advances in Engineering and Technology (ICAET), Nagapattinam, India, 2–3 May 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Wits, W.W.; Vaneker, T.H. Integrated design and manufacturing of flat miniature heat pipes using printed circuit board technology. IEEE Trans. Components Packag. Technol. 2010, 33, 398–408. [Google Scholar] [CrossRef]
- Oshman, C.; Shi, B.; Li, C.; Yang, R.; Lee, Y.; Peterson, G.; Bright, V.M. The development of polymer-based flat heat pipes. J. Microelectromechanical Syst. 2011, 20, 410–417. [Google Scholar] [CrossRef]
- Oshman, C.; Li, Q.; Liew, L.A.; Yang, R.; Lee, Y.C.; Bright, V.M.; Sharar, D.J.; Jankowski, N.R.; Morgan, B.C. Thermal performance of a flat polymer heat pipe heat spreader under high acceleration. J. Micromechanics Microengineering 2012, 22, 045018. [Google Scholar] [CrossRef] [Green Version]
- Shi, B.; Wang, Y.B.; Shan, Y.J. An Experimental Investigation of Thermal Performance of a Polymer-Based Flat Heat Pipe. Heat Transf. Res. 2016, 45, 746–757. [Google Scholar] [CrossRef]
- Oshman, C.; Li, Q.; Liew, L.A.; Yang, R.; Bright, V.M.; Lee, Y. Flat flexible polymer heat pipes. J. Micromechanics Microengineering 2012, 23, 015001. [Google Scholar] [CrossRef]
- Shih, W.P.; Wu, G.W.; Chen, S.L. Lamination and Characterization of a Polyethylene-Terephthalate Flexible Micro Heat Pipe. Front. Heat Pipes 2012, 3, 023003. [Google Scholar] [CrossRef] [Green Version]
- Savino, R.; di Francescantonio, N.; Fortezza, R.; Abe, Y. Heat pipes with binary mixtures and inverse Marangoni effects for microgravity applications. Acta Astronaut. 2007, 61, 16–26. [Google Scholar] [CrossRef]
- Hsieh, S.S.; Yang, Y.R. Design, fabrication and performance tests for a polymer-based flexible flat heat pipe. Energy Convers. Manag. 2013, 70, 10–19. [Google Scholar] [CrossRef]
- Lewis, R.; Liew, L.A.; Xu, S.; Lee, Y.C.; Yang, R. Microfabricated ultra-thin all-polymer thermal ground planes. Sci. Bull. 2015, 60, 701–706. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.S.; Yang, T.Y.; Tu, C.W.; Yeh, C.T.; Lee, M.T. A novel flat polymer heat pipe with thermal via for cooling electronic devices. Energy Convers. Manag. 2015, 100, 37–44. [Google Scholar] [CrossRef]
- Yang, C.; Chang, C.; Song, C.; Shang, W.; Wu, J.; Tao, P.; Deng, T. Fabrication and performance evaluation of flexible heat pipes for potential thermal control of foldable electronics. Appl. Therm. Eng. 2016, 95, 445–453. [Google Scholar] [CrossRef]
- Yang, C.; Song, C.; Shang, W.; Tao, P.; Deng, T. Flexible heat pipes with integrated bioinspired design. Prog. Nat. Sci. Mater. Int. 2015, 25, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Hou, H.; Xie, Y.; Li, Q. Large-Scale Synthesis of Single-Crystalline Quasi-Aligned Submicrometer CuO Ribbons. Cryst. Growth Des. 2005, 5, 201–205. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, W.; Xiang, J.; Liu, C.; Gao, Y.; Li, S.; Ling, W. Development of novel flexible heat pipe with multistage design inspired by structure of human spine. Appl. Therm. Eng. 2020, 175, 115392. [Google Scholar] [CrossRef]
- Butler, D.; Ku, J.; Swanson, T. Loop heat pipes and capillary pumped loops-an applications perspective. In Proceedings of the AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2002; Volume 608, pp. 49–56. [Google Scholar]
- Riehl, R.R.; Dutra, T. Development of an experimental loop heat pipe for application in future space missions. Appl. Therm. Eng. 2005, 25, 101–112. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Z.; Tang, Q. Theoretical investigation of the performance of a novel loop heat pipe solar water heating system for use in Beijing, China. Appl. Therm. Eng. 2010, 30, 2526–2536. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhao, X.; Xu, J.; Yu, X. Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system. Appl. Energy 2013, 102, 1229–1245. [Google Scholar] [CrossRef]
- Vasiliev, L.; Lossouarn, D.; Romestant, C.; Alexandre, A.; Bertin, Y.; Piatsiushyk, Y.; Romanenkov, V. Loop heat pipe for cooling of high-power electronic components. Int. J. Heat Mass Transf. 2009, 52, 301–308. [Google Scholar] [CrossRef]
- Jose, J.; Baby, R. Recent advances in loop heat pipes: A review. IOP Conf. Ser. Mater. Sci. Eng. 2018, 396, 012060. [Google Scholar] [CrossRef]
- Chen, P.C.; Lin, W.K. The application of capillary pumped loop for cooling of electronic components. Appl. Therm. Eng. 2001, 21, 1739–1754. [Google Scholar] [CrossRef]
- Gottschlich, J.M. Capillary Pumped Loops for Aerospace Application. SAE Trans. 1989, 98, 1701–1706. [Google Scholar]
- Accorinti, F.; Ayel, V.; Bertin, Y. Steady-state analysis of a Capillary Pumped Loop for Terrestrial Application with methanol and ethanol as working fluids. Int. J. Therm. Sci. 2019, 137, 571–583. [Google Scholar] [CrossRef]
- Kobayashi, T.; Ogushi, T.; Haga, S.; Ozaki, E.; Fujii, M. Heat transfer performance of a flexible looped heat pipe using R134a as a working fluid: Proposal for a method to predict the maximum heat transfer rate of FLHP. Heat Transf. Res. 2003, 32, 306–318. [Google Scholar] [CrossRef]
- Alqahtani, A.A.; Edwardson, S.; Marengo, M.; Bertola, V. Performance of flat-plate, flexible polymeric pulsating heat pipes at different bending angles. Appl. Therm. Eng. 2022, 216, 118948. [Google Scholar] [CrossRef]
- Wu, S.C.; Gu, T.W.; Wang, D.; Chen, Y.M. Study of PTFE wick structure applied to loop heat pipe. Appl. Therm. Eng. 2015, 81, 51–57. [Google Scholar] [CrossRef]
- Maydanik, Y.; Fershtater, Y.; Pastukhov, V. Loop Heat Pipes: Development, Investigation and Elements of Engineering Calculations. Technical Report; Ural Division of the USSR Academy of Sciences: Sverdlovsk, Russia, 1989. [Google Scholar]
- Hoang, T.T.; O’Connell, T.A.; Ku, J.; Butler, C.D.; Swanson, T.D. Miniature loop heat pipes for electronic cooling. In Proceedings of the International Electronic Packaging Technical Conference and Exhibition, Maui, HI, USA, 6–11 July 2003; Volume 36908, pp. 517–525. [Google Scholar]
- Gernert, N.J.; Brown, J. Development of a Flexible Loop Heat Pipe Cold Plate. In Proceedings of the Aerospace Atlantic Conference & Exposition; SAE International: Warrendale, PA, USA, 1995. [Google Scholar] [CrossRef]
- Ogushi, T.; Yao, A.; Xu, J.J.; Masumoto, H.; Kawaji, M. Heat transport characteristics of flexible looped heat pipe under micro-gravity condition. Heat Transf. Res. 2003, 32, 381–390. [Google Scholar] [CrossRef]
- Riehl, R.R.; Siqueira, T.C. Heat transport capability and compensation chamber influence in loop heat pipes performance. Appl. Therm. Eng. 2006, 26, 1158–1168. [Google Scholar] [CrossRef]
- Riehl, R.R.; Siqueira, T. Evaluating loop heat pipes performances regarding their geometric characteristics. In Proceedings of the International Conference on Environmental Systems-35th ICES, Rome, Italy, 11–14 July 2005; pp. 11–14. [Google Scholar]
- Adoni, A.A.; Ambirajan, A.; Jasvanth, V.; Kumar, D.; Dutta, P. Effects of mass of charge on loop heat pipe operational characteristics. J. Thermophys. Heat Transf. 2009, 23, 346–355. [Google Scholar] [CrossRef]
- Boo, J.H.; Chung, W.B. Experimental study on the thermal performance of a small-scale loop heat pipe with polypropylene wick. J. Mech. Sci. Technol. 2005, 19, 1052–1061. [Google Scholar] [CrossRef]
- Nagano, H.; Fukuyoshi, F.; Ogawa, H.; Nagai, H. Development of an experimental small loop heat pipe with polytetrafluoroethylene wicks. J. Thermophys. Heat Transf. 2011, 25, 547–552. [Google Scholar] [CrossRef]
- Kaya, T.; Hoang, T.T. Mathematical modeling of loop heat pipes and experimental validation. J. Thermophys. Heat Transf. 1999, 13, 314–320. [Google Scholar] [CrossRef]
- Mitomi, M.; Nagano, H. Long-distance loop heat pipe for effective utilization of energy. Int. J. Heat Mass Transf. 2014, 77, 777–784. [Google Scholar] [CrossRef]
- Kiper, A.M. Investigation of Thermal-Fluid Mechanical Characteristics of The Capillary Pump Loop; Aeronautics and 755 Space Administration, Goddard Space Flight Center: Greenbelt, MD, USA, 1991.
- Kolos, K.; Herold, K.; Kroliczek, E.; Swanson, T. Flow visualization in capillary pumped loop systems. In Proceedings of the AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 1996; Volume 361, pp. 731–738. [Google Scholar]
- Ye, H.; Sokolovskij, R.; van Zeijl, H.W.; Gielen, A.W.; Zhang, G. A polymer based miniature loop heat pipe with silicon substrate and temperature sensors for high brightness light-emitting diodes. Microelectron. Reliab. 2014, 54, 1355–1362. [Google Scholar] [CrossRef]
- Phan, N.; Nagano, H. Fabrication and testing of a miniature flat evaporator loop heat pipe with polydimethylsiloxane and molding. Appl. Therm. Eng. 2020, 175, 115377. [Google Scholar] [CrossRef]
- Phan, N.; Nagano, H. Novel hybrid structures to improve performance of miniature flat evaporator loop heat pipes for electronics cooling. Int. J. Heat Mass Transf. 2022, 195, 123187. [Google Scholar] [CrossRef]
- Chang, X.; Watanabe, N.; Nagai, H.; Nagano, H. Visualization of thermo-fluid behavior of loop heat pipe with two evaporators and one condenser under various orientations with even heat loads. Int. J. Heat Mass Transf. 2022, 198, 123397. [Google Scholar] [CrossRef]
- Chang, X.; Watanabe, N.; Nagano, H. Visualization study of a loop heat pipe with two evaporators and one condenser under gravity-assisted condition. Int. J. Heat Mass Transf. 2019, 135, 378–391. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J.; Wen, Q.; Shittu, S.; Liu, G.; Qiu, Z.; Zhao, X.; Wang, Z. Visualization study of a flat confined loop heat pipe for electronic devices cooling. Appl. Energy 2022, 322, 119451. [Google Scholar] [CrossRef]
- Liu, L.; Yuan, B.; Cui, C.; Yang, X.; Wei, J. Investigation of a loop heat pipe to achieve high heat flux by incorporating flow boiling. Int. J. Heat Mass Transf. 2022, 195, 123173. [Google Scholar] [CrossRef]
- Akachi, H. Structure of Heat Pipe. U.S. Patent No. 4921041, 1 May 1990. [Google Scholar]
- Nine, M.J.; Tanshen, M.R.; Munkhbayar, B.; Chung, H.; Jeong, H. Analysis of pressure fluctuations to evaluate thermal performance of oscillating heat pipe. Energy 2014, 70, 135–142. [Google Scholar] [CrossRef]
- Yang, H.; Khandekar, S.; Groll, M. Operational limit of closed loop pulsating heat pipes. Appl. Therm. Eng. 2008, 28, 49–59. [Google Scholar] [CrossRef]
- Alhuyi Nazari, M.; Ahmadi, M.H.; Ghasempour, R.; Shafii, M.B.; Mahian, O.; Kalogirou, S.; Wongwises, S. A review on pulsating heat pipes: From solar to cryogenic applications. Appl. Energy 2018, 222, 475–484. [Google Scholar] [CrossRef]
- Han, X.; Wang, X.; Zheng, H.; Xu, X.; Chen, G. Review of the development of pulsating heat pipe for heat dissipation. Renew. Sustain. Energy Rev. 2016, 59, 692–709. [Google Scholar] [CrossRef]
- Marengo, M.; Nikolayev, V.S. Pulsating Heat Pipes: Experimental Analysis, Design and Applications. In Encyclopedia of Two-Phase Heat Transfer and Flow IV; World Scientific: Singapore, 2018; Chapter 1; pp. 1–62. [Google Scholar] [CrossRef]
- Mameli, M.; Besagni, G.; Bansal, P.K.; Markides, C.N. Innovations in pulsating heat pipes: From origins to future perspectives. Appl. Therm. Eng. 2022, 203, 117921. [Google Scholar] [CrossRef]
- Lin, Y.H.; Kang, S.W.; Wu, T.Y. Fabrication of polydimethylsiloxane (PDMS) pulsating heat pipe. Appl. Therm. Eng. 2009, 29, 573–580. [Google Scholar] [CrossRef]
- Ji, Y.; Liu, G.; Ma, H.; Li, G.; Sun, Y. An experimental investigation of heat transfer performance in a polydimethylsiloxane (PDMS) oscillating heat pipe. Appl. Therm. Eng. 2013, 61, 690–697. [Google Scholar] [CrossRef]
- Ogata, S.; Sukegawa, E.; Kimura, T. Performance evaluation of ultra-thin polymer pulsating heat pipes. In Proceedings of the Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 27–30 May 2014; pp. 519–526. [Google Scholar] [CrossRef]
- Lim, J.; Kim, S.J. Fabrication and experimental evaluation of a polymer-based flexible pulsating heat pipe. Energy Convers. Manag. 2018, 156, 358–364. [Google Scholar] [CrossRef]
- Jung, C.; Lim, J.; Kim, S.J. Fabrication and evaluation of a high-performance flexible pulsating heat pipe hermetically sealed with metal. Int. J. Heat Mass Transf. 2020, 149, 119180. [Google Scholar] [CrossRef]
- Arai, T.; Kawaji, M. Thermal performance and flow characteristics in additive manufactured polycarbonate pulsating heat pipes with Novec 7000. Appl. Therm. Eng. 2021, 197, 117273. [Google Scholar] [CrossRef]
- Der, O.; Marengo, M.; Bertola, V. A low cost, flexible pulsating heat pipe technology. In Proceedings of the Thermal and Fluids Engineering Summer Conference, Fort Lauderdale, FL, USA, 4–7 March 2018; Volume 2018, pp. 321–327. [Google Scholar]
- Der, O.; Marengo, M.; Bertola, V. Thermal Performance of Pulsating Heat Stripes Built With Plastic Materials. J. Heat Transf. 2019, 141, 091808. [Google Scholar] [CrossRef] [Green Version]
- Der, O.; Edwardson, S.; Marengo, M.; Bertola, V. Engineered composite polymer sheets with enhanced thermal conductivity. IOP Conf. Ser. Mater. Sci. Eng. 2019, 613, 012008. [Google Scholar] [CrossRef]
- Der, O.; Alqahtani, A.A.; Marengo, M.; Bertola, V. Characterization of polypropylene pulsating heat stripes: Effects of orientation, heat transfer fluid, and loop geometry. Appl. Therm. Eng. 2021, 184, 116304. [Google Scholar] [CrossRef]
- Chae, H.G.; Kumar, S. Making Strong Fibers. Science 2008, 319, 908–909. [Google Scholar] [CrossRef] [PubMed]
- Tarannum, F.; Muthaiah, R.; Annam, R.S.; Gu, T.; Garg, J. Effect of alignment on enhancement of thermal conductivity of polyethylene–graphene nanocomposites and comparison with effective medium theory. Nanomaterials 2020, 10, 1291. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Horibe, H.; Shirai, T.; Hotta, Y.; Nakano, H.; Nagai, H.; Mitsuishi, K.; Watari, K. Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces. J. Mater. Chem. 2010, 20, 2749–2752. [Google Scholar] [CrossRef]
- Pierson, H. Handbook of Carbon, Graphite, Diamond and Fullerenes: Properties, Processing and Applications; Noyes Publications: Norwich, NY, USA, 1994. [Google Scholar]
- Fischer, J. Carbon Nanotubes: Structure and Properties. In Carbon Nanomaterials, 2nd ed.; Gogotsi, Y., Presser, V., Eds.; CRC Press: Boca Raton, FL, USA, 2013; p. 529. [Google Scholar] [CrossRef]
- Donnet, J.B. Carbon Black: Science and Technology; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Kelly, B. Physics of Graphite; Applied Science; Springer: Dordrecht, The Netherlands, 1981; Volume 13. [Google Scholar]
- Causin, V.; Marega, C.; Marigo, A.; Ferrara, G.; Ferraro, A. Morphological and structural characterization of polypropylene/conductive graphite nanocomposites. Eur. Polym. J. 2006, 42, 3153–3161. [Google Scholar] [CrossRef]
- Tu, H.; Ye, L. Thermal conductive PS/graphite composites. Polym. Adv. Technol. 2009, 20, 21–27. [Google Scholar] [CrossRef]
- Ganguli, S.; Roy, A.K.; Anderson, D.P. Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon 2008, 46, 806–817. [Google Scholar] [CrossRef]
- de Sousa, D.E.S.; Scuracchio, C.H.; de Oliveira Barra, G.M.; de Almeida Lucas, A. Chapter 7—Expanded graphite as a multifunctional filler for polymer nanocomposites. In Multifunctionality of Polymer Composites; Friedrich, K., Breuer, U., Eds.; William Andrew Publishing: Oxford, UK, 2015; pp. 245–261. [Google Scholar] [CrossRef]
- Mu, Q.; Feng, S. Thermal conductivity of graphite/silicone rubber prepared by solution intercalation. Thermochim. Acta 2007, 462, 70–75. [Google Scholar] [CrossRef]
- Kalaitzidou, K.; Fukushima, H.; Drzal, L.T. Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon 2007, 45, 1446–1452. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, Q.; Shi, J.; Zhai, G.; Liu, L. Graphite blocks with high thermal conductivity derived from natural graphite flake. Carbon 2008, 46, 414–421. [Google Scholar] [CrossRef]
- Veca, L.M.; Meziani, M.J.; Wang, W.; Wang, X.; Lu, F.; Zhang, P.; Lin, Y.; Fee, R.; Connell, J.W.; Sun, Y.P. Carbon Nanosheets for Polymeric Nanocomposites with High Thermal Conductivity. Adv. Mater. 2009, 21, 2088–2092. [Google Scholar] [CrossRef]
- Duncan, B.; Urquhart, J.; Roberts, S. Review of Measurement and Modelling of Permeation and Diffusion in Polymers; Number DEPC-MPR 012; National Physics Laboratory: Teddington, UK, 2005. [Google Scholar]
- Anukiruthika, T.; Sethupathy, P.; Wilson, A.; Kashampur, K.; Moses, J.A.; Anandharamakrishnan, C. Multilayer packaging: Advances in preparation techniques and emerging food applications. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1156–1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauschendorfer, J.E.; Vana, P. Increasing the Gas Barrier Properties of Polyethylene Foils by Coating with Poly(methyl acrylate)-Grafted Montmorillonite Nanosheets. Polymers 2021, 13, 3228. [Google Scholar] [CrossRef] [PubMed]
- Uthaman, A.; Lal, H.M.; Li, C.; Xian, G.; Thomas, S. Mechanical and Water Uptake Properties of Epoxy Nanocomposites with Surfactant-Modified Functionalized Multiwalled Carbon Nanotubes. Nanomaterials 2021, 11, 1234. [Google Scholar] [CrossRef] [PubMed]
- Groner, M.D.; George, S.M.; McLean, R.S.; Carcia, P.F. Gas diffusion barriers on polymers using Al2O3 atomic layer deposition. Appl. Phys. Lett. 2006, 88, 051907. [Google Scholar] [CrossRef]
- Dameron, A.A.; Davidson, S.D.; Burton, B.B.; Carcia, P.F.; McLean, R.S.; George, S.M. Gas Diffusion Barriers on Polymers Using Multilayers Fabricated by Al2O3 and Rapid SiO2 Atomic Layer Deposition. J. Phys. Chem. C 2008, 112, 4573–4580. [Google Scholar] [CrossRef]
- Langereis, E.; Creatore, M.; Heil, S.B.S.; van de Sanden, M.C.M.; Kessels, W.M.M. Plasma-assisted atomic layer deposition of Al2O3 moisture permeation barriers on polymers. Appl. Phys. Lett. 2006, 89, 081915. [Google Scholar] [CrossRef]
- Young, T. An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 1805, 95, 65–87. [Google Scholar] [CrossRef]
- Gibbs, J. The Scientific Papers of J.W. Gibbs; Dover: Mineola, NY, USA, 1961; Volume 1. [Google Scholar]
- Israelachvili, J. Intramolecular and Surface Forces, 3rd ed.; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Agrawal, G.; Negi, Y.; Pradhan, S.; Dash, M.; Samal, S. Wettability and contact angle of polymeric biomaterials. In Characterization of Polymeric Biomaterials; Tanzi, M.C., Farè, S., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 57–81. [Google Scholar] [CrossRef]
- Mittal, K.L. Physicochemical Aspects of Polymer Surfaces; Springer: Berlin/Heidelberg, Germany, 1983; Volume 1, p. 668. [Google Scholar]
- Berczeli, M.; Weltsch, Z. Enhanced Wetting and Adhesive Properties by Atmospheric Pressure Plasma Surface Treatment Methods and Investigation Processes on the Influencing Parameters on HIPS Polymer. Polymers 2021, 13, 901. [Google Scholar] [CrossRef]
- Seiler, M.; Gruben, J.; Knauft, A.; Barz, A.; Bliedtner, J. Laser beam activation of polymer surfaces for selective chemical metallization. Procedia CIRP 2020, 94, 891–894. [Google Scholar] [CrossRef]
- de Gennes, P.G. Reptation of a Polymer Chain in the Presence of Fixed Obstacles. J. Chem. Phys. 1971, 55, 572–579. [Google Scholar] [CrossRef]
- Doi, M.; Edwards, S.F. Dynamics of concentrated polymer systems. Part 1.—Brownian motion in the equilibrium state. J. Chem. Soc. Faraday Trans. 1978, 74, 1789–1801. [Google Scholar] [CrossRef]
Thermoplastics | Thermosets | Elastomers |
---|---|---|
Polyethylene (PE) | Polyesters | Polyisoprene (natural rubber, isoprene rubber) |
Low density polyethylene (LDPE) | Epoxy | Styrene-butadiene copolymer (styrene-butadiene rubber) |
High density polyethylene (HDPE) | Melamine formaldehyde | Polybutadiene (butadiene rubber) |
Polypropylene (PP) | Urea formaldehyde | Acrylonitrile-butadiene copolymer (nitrile rubber) |
Poly(vinyl chloride) (PVC) | Polyurethane | Isobutylene-isoprene copolymer (butyl rubber) |
Polystyrene (PS) | Phenol formaldehyde (PF) | Ethylene-propylene monomer (EPM), ethylene-propylene-diene monomer (EPDM) |
Acrylonitrile butadiene styrene (ABS) | Silicone | Polychloroprene (neoprene) |
Polycarbonate (PC) | Duroplast | Polysulfide (Thiokol) |
Acrylic | Cyanate Ester | Polydimethyl siloxane (silicone) |
Acrylonitrile butadiene styrene (ABS) | Polyimide | Fluoroelastomer |
Nylon | Furan | Polyacrylate elastomer |
Polylactic acid (polylactide) | Vinyl Ester | Polyethylene (chlorinated, chlorosulfonated) |
Polyether sulfone (PES) | Vulcanized Rubber | Styrene-isoprene-styrene (SIS), styrene-butadiene-styrene (SBS) block copolymer |
Polyoxymethylene (POM) | Bakelite | EPDM-polypropylene blend |
Polyether ether ketone(PEEK) | Thiolyte | |
Polytetrafluoroethylene (Teflon) | Benzoxazines | |
Polyetherimide (PEI) | Diallyl-phthalate (DAP) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, A.A.; Bertola, V. Polymer and Composite Materials in Two-Phase Passive Thermal Management Systems: A Review. Materials 2023, 16, 893. https://doi.org/10.3390/ma16030893
Alqahtani AA, Bertola V. Polymer and Composite Materials in Two-Phase Passive Thermal Management Systems: A Review. Materials. 2023; 16(3):893. https://doi.org/10.3390/ma16030893
Chicago/Turabian StyleAlqahtani, Ali Ahmed, and Volfango Bertola. 2023. "Polymer and Composite Materials in Two-Phase Passive Thermal Management Systems: A Review" Materials 16, no. 3: 893. https://doi.org/10.3390/ma16030893
APA StyleAlqahtani, A. A., & Bertola, V. (2023). Polymer and Composite Materials in Two-Phase Passive Thermal Management Systems: A Review. Materials, 16(3), 893. https://doi.org/10.3390/ma16030893