Sub-ps Laser Deposited Copper Films for Application in RF Guns
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Musumeci, P.; Cultrera, L.; Ferrario, M.; Filippetto, D.; Gatti, G.; Gutierrez, M.S.; Moody, J.T.; Moore, N.; Rosenzweig, J.B.; Scoby, C.M.; et al. Multiphoton Photoemission from a Copper Cathode Illuminated by Ultrashort Laser Pulses in an rf Photoinjector. Phys. Rev. Lett. 2010, 104, 84801–84804. [Google Scholar] [CrossRef] [PubMed]
- Divall, M.C.; Prat, E.; Bettoni, S.; Vicario, C.; Trisorio, A.; Schietinger, T.; Hauri, C.P. Intrinsic emittance reduction of copper cathodes by laser wavelength tuning in an rf photoinjector. Phys. Rev. Spec. Top. Accel. Beams 2015, 18, 33401–33406. [Google Scholar] [CrossRef]
- Chiadroni, E.; Bacci, A.; Bellaveglia, M.; Boscolo, M.; Castellano, M.; Cultrera, L.; diPirro, G.; Ferrario, M.; Ficcadenti, L.; Filippetto, D.; et al. The SPARC linear accelerator based terahertz source. Appl. Phys. Lett. 2013, 102, 94101–94105. [Google Scholar] [CrossRef]
- Scifo, J.; Alesini, D.; Anania, M.P.; Bellaveglia, M.; Bellucci, S.; Biagioni, A.; Bisesto, F.; Cardelli, F.; Chiadroni, E.; Cianchi, A.; et al. Nano-machining surface analysis and emittance measurements of a copper photocathode at SPARC_LAB. Nucl. Instrum. Methods Phys. Res. Sect. A 2018, 909, 233–238. [Google Scholar] [CrossRef]
- Maldonado, J.R.; Liu, Z.; Dowell, D.H.; Kirby, R.E.; Sun, Y.; Pianetta, P.; Pease, F. Robust CsBr/Cu photocathodes for the linac coherent light source. Phys. Rev. ST Accel. Beams 2008, 11, 060702. [Google Scholar] [CrossRef]
- Zhou, F.; Brachmann, A.; Decker, F.-J.; Emma, P.; Gilevich, S.; Iverson, R.; Stefan, P.; Turner, J. High-brightness electron beam evolution following laser-based cleaning of a photocathode. Phys. Rev. ST Accel. Beams 2012, 15, 090703. [Google Scholar] [CrossRef]
- Lorusso, A.; Gontad, F.; Solombrino, L.; Chiadroni, E.; Broitman, E.; Perrone, A. Tight comparison of Mg and Y thin film photocathodes obtained by the pulsed laser deposition technique. Nucl. Instrum. Meth. Phys. Res. A 2016, 836, 57–60. [Google Scholar] [CrossRef]
- Wang, X.J.; Babzien, M.; Chang, X.Y.; Lynch, D.; Pjerov, S.; Woodle, M.; Wu, Z. Band high duty photo-injection system. In Proceedings of the 19th IEEE Particle Accelerator Conference, Chicago, IL, USA, 18–22 June 2001; Volume 1822. [Google Scholar]
- Qian, J.; Murphy, J.B.; Shen, Y.; Tang, C.X.; Wang, X.J. Surface photoemission in a high-brightness electron beam radio frequency gun. Appl. Phys. Lett. 2010, 97, 253504. [Google Scholar] [CrossRef]
- Wang, X.J.; Srinivasan-Rao, T.; Batchelor, K.; Ben-Zvi, I.; Fischer, J. Measurements on photoelectrons from a magnesium cathode in a microwave electron gun. Nucl. Instrum. Meth. Phys. Res. A 1995, 356, 159–166. [Google Scholar] [CrossRef]
- Srinivasan-Rao, T.; Schill, J.; Ben-Zvi, I.; Woodle, M. Sputtered magnesium as a photocathode material for rf injectors. Rev. Sci. Instrum. 1998, 69, 2292–2296. [Google Scholar] [CrossRef]
- Perrone, A.; D’Elia, M.; Gontad, F.; DiGiulio, M.; Maruccio, G.; Cola, A.; Stankova, N.E.; Kovacheva, D.G.; Broitman, E. Non conventional photocathodes based on Cu thin films deposited on Y substrate by sputtering. Nucl. Instrum. Methods Phys. Res. Sect. A 2014, 752, 27–32. [Google Scholar] [CrossRef]
- Srinivasan-Rao, T.; Fischer, J.; Tsang, T. Photoemission studies on metals using picosecond ultraviolet laser pulses. J. Appl. Phys. 1991, 69, 3291–3296. [Google Scholar] [CrossRef]
- Cultrera, L.; Gatti, G.; Tazzioli, F.; Perrone, A.; Miglietta, P.; Ristoscu, C.; Orlanducci, S.; Fiori, A. Mg based photocathodes for high brightness RF photoinjectors. Appl. Surf. Sci. 2007, 253, 6531–6534. [Google Scholar] [CrossRef]
- Lorusso, A.; Trovò, M.; Demidovich, A.; Cinquegrana, P.; Gontad, F.; Broitman, E.; Chiadroni, E.; Perrone, A. Pulsed laser deposition of yttrium photocathode suitable for use in radio-frequency guns. Appl. Phys. A 2017, 123, 1–7. [Google Scholar] [CrossRef]
- Cultrera, L.; Gatti, G.; Miglietta, P.; Tazzioli, F.; Perrone, A.; Moody, J.T.; Musumeci, P. Electron emission characterization of Mg photocathode grown by Pulsed Laser Deposition within an S-band RF gun. Phys. Rev. Spec. Top.-Accel. Beams 2009, 12, 043502. [Google Scholar] [CrossRef]
- Lorusso, A.; Anni, M.; Caricato, A.P.; Gontad, F.; Perulli, A.; Taurino, A.; Perrone, A.; Chiadroni, E. Deposition of Y thin films by nanosecond UV pulsed laser ablation for photocathode application. Thin Solid Film. 2016, 603, 441–445. [Google Scholar] [CrossRef]
- Gontad, F.; Lorusso, A.; Panareo, M.; Monteduro, A.G.; Maruccio, G.; Broitman, E.; Perrone, A. Nanomechanical and electrical properties of Nb thin films deposited on Pb substrates by pulsed laser deposition as a new concept photocathode for superconductor cavities. Nucl. Instrum. Methods Phys. Res. Sect. A 2015, 84, 132–136. [Google Scholar] [CrossRef][Green Version]
- Lorusso, A. Overview and development of metallic photocathodes prepared by laser ablation. Appl. Phys. A 2013, 110, 869–875. [Google Scholar] [CrossRef]
- Cultrera, L.; Grigorescu, S.; Gatti, G.; Miglietta, P.; Tazzioli, F.; Perrone, A.; Nanosci, J. Photoelectron emission from yttrium thin films prepared by pulsed laser deposition. J. Nanosci. Nanotechnol. 2009, 9, 1585–1588. [Google Scholar] [CrossRef]
- Lorusso, A.; Cola, A.; Gontad, F.; Koutselas, I.; Panareo, M.; Vainos, N.A.; Perrone, A. New configuration of metallic photocathodes prepared by pulsed laser deposition. Nucl. Instrum. Methods Phys. Res. Sect. A 2013, 724, 72–75. [Google Scholar] [CrossRef]
- Saenger, K.L. Angular Distribution of Ablated Material, in Pulsed Laser Deposition of Thin Films. In Pulsed Laser Deposition of Thin Films; Chrisey, D.B., Hubler, G.K., Eds.; John Wiley&Sons: New York, NY, USA, 1994; p. 199 and references therein. [Google Scholar]
- Na, L.; Xiaochang, N.; Ru, H.; Tony, D.; Xuan, W.; Amoruso, S.; Ching-yue, W. The spatial detection on distribution of metal nano-particles during femtosecond laser ablation. Proc. SPIE 2009, 7381, 738109. [Google Scholar]
- Donnelly, T.; Lunney, J.G.; Amoruso, S.; Bruzzese, R.; Wang, X.; Ni, X. Angular distributions of plume components in ultrafast laser ablation of metal targets. Appl. Phys. A 2010, 100, 569–574. [Google Scholar] [CrossRef]
- Anoop, K.K.; Polek, M.P.; Bruzzese, R.; Amoruso, S.; Harilal, S.S. Multidiagnostic analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range. J. Appl. Phys. 2015, 117, 83108–83109. [Google Scholar] [CrossRef]
- Toftmann, B.; Doggett, B.; Budtz-Jørgensen, C.; Schou, J.; Lunney, J.G. Femtosecond ultraviolet laser ablation of silver and comparison with nanosecond ablation. J. Appl. Phys. 2013, 113, 083304. [Google Scholar] [CrossRef]
- Amoruso, S.; Bruzzese, R.; Wang, X.; Nedialkov, N.N.; Atanasov, P.A. Femtosecond laser ablation of nickel in vacuum. J. Phys. D Appl. Phys. 2007, 40, 331–340. [Google Scholar] [CrossRef]
- Harilal, S.S.; Diwakar, P.K.; Polek, M.P.; Phillips, M.C. Morphological changes in ultrafast laser ablation plumes with varying spot size. Opt. Express 2015, 23, 15608–15615. [Google Scholar] [CrossRef]
- Garrelie, F.; Loir, A.S.; Donnet, C.; Rogemond, F.; LeHarzic, R.; Belin, M.; Audouard, E.; Laporte, P. Femtosecond pulsed laser deposition of diamond-like carbon thin films for tribological applications. Surf. Coat. Technol. 2003, 163–164, 306–312. [Google Scholar] [CrossRef]
- Loir, A.S.; Garrelie, F.; Donnet, C.; Rogemond, F.; Subtil, J.L.; Forest, B.; Belin, M.; Laporte, P. Towards the deposition of tetrahedral diamond-like carbon films on hip joints by femtosecond pulsed laser ablation. Surf. Coat. Technol. 2004, 188–189, 728–734. [Google Scholar] [CrossRef]
- Gilicze, B.; Barna, A.; Kovács, Z.; Szatmári, S.; Földes, I.B. Plasma mirrors for short pulse KrF lasers. Rev. Sci. Instrum. 2016, 87, 083101. [Google Scholar] [CrossRef]
- Simon, P.; Ihlemann, J. Ablation of submicron structures on metals and semiconductors by femtosecond UV-laser pulses. Appl. Surf. Sci. 1997, 109–110, 25–29. [Google Scholar] [CrossRef]
- Komashko, A.M.; Feit, M.D.; Rubenchik, A.M. Modeling of long-term behavior of ablation plumes produced with ultrashort laser pulses. Proc. SPIE 2000, 3935, 97–103. [Google Scholar]
- Jordan, R.; Cole, D.; Lunney, J.G.; Mackay, K.; Givord, D. Pulsed laser ablation of copper. Appl. Surf. Sci. 1995, 86, 24–28. [Google Scholar] [CrossRef]
- Shin, B.S.; Oh, J.Y.; Sohn, H. Theoretical and experimental investigations into laser ablation of polyimide and copper films with 355-nm Nd:YVO4 laser. J. Mater. Process. Technol. 2007, 187–188, 260–263. [Google Scholar] [CrossRef]
- Tang, G.; Abdolvand, A. Laser-assisted highly organized structuring of copper. Opt. Mater. Express 2011, 1, 1425–1432. [Google Scholar] [CrossRef]
- Zhang, W.; Yao, Y.L.; Chen, K. Modelling and Analysis of UV Laser Micromachining of Copper. Int. J. Adv. Manuf. Technol. 2001, 18, 323–331. [Google Scholar] [CrossRef]
- Tunna, L.; Kearns, A.; O’Neill, W.; Sutcliffe, C.J. Micromachining of copper using Nd:YAG laser radiation at 1064, 532 and 355 nm wavelengths. Opt. Laser Technol. 2001, 33, 135–143. [Google Scholar] [CrossRef]
- Lorusso, A.; Nassisi, V.; Buccolieri, A.; Buccolieri, G.; Castellano, A.; Leo, L.S.; DiGiulio, M.; Torrisi, L.; Caridi, F.; Borrielli, A. Laser ablation threshold of culturalheritage metals. Radiat. Eff. Defects Solids 2008, 163, 325–329. [Google Scholar] [CrossRef]
- Müller, F.; Mann, K.; Simon, P.; Bernstein, J.S.; Zaal, G.J. A Comparative Study of Deposition of Thin Films by Laser Induced PVD with Femtosecond and Nanosecond Laser Pulses. Proc. SPIE 1993, 1858, 464–475. [Google Scholar]
- Földes, I.B.; Bakos, J.; Gal, K.; Juhász, Z.; Kedves, M.Á.; Kocsis, G.; Szatmari, S.; Veres, G. Properties of high harmonics generated by ultrashort UV laser pulses on solid surfaces. Laser Phys. 2000, 10, 264–269. [Google Scholar]
- Byskov-Nielsen, J.; Savolainen, J.M.; Snogdahl, M.; Balling, P. Ultra-short pulse laser ablation of copper, silver and tungsten: Experimental data and two-temperature model simulations. Appl. Phys. A 2011, 103, 447–453. [Google Scholar] [CrossRef]
- Mannion, P.T.; Magee, J.; Coyne, E.; O’Connor, G.M.; Glynn, T.J. The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air. Appl. Surf. Sci. 2004, 233, 275–287. [Google Scholar] [CrossRef]
- Momma, C.; Nolte, S.; Chichkov, B.N.; Alvensleben, F.V.; Tünnermann, A. Precise laser ablation with ultrashort pulses. Appl. Surf. Sci. 1997, 109-110, 15–19. [Google Scholar] [CrossRef]
- Cheng, C.W.; Wang, S.Y.; Chang, K.P.; Chen, J.K. Femtosecond laser ablation of copper at high laser fluence: Modeling and experimental comparison. Appl. Surf. Sci. 2016, 361, 41–48. [Google Scholar] [CrossRef]
- Gamaly, E.G.; Rode, A.V.; Luther-Davies, B.; Tikhonchuk, V.T. Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics. Phys. Plasmas 2002, 9, 949–957. [Google Scholar] [CrossRef]
- Axente, E.; Noël, S.; Hermann, J.; Sentis, M.; Mihailescu, I.N. Subpicosecond laser ablation of copper and fused silica: Initiation threshold and plasma expansion. Appl. Surf. Sci. 2009, 255, 9734–9737. [Google Scholar] [CrossRef]
- Hashida, M.; Semerok, A.F.; Gobert, O.; Petite, G.; Izawa, Y.; Wagner, J.F. Ablation threshold dependence on pulse duration for copper. Appl. Surf. Sci. 2002, 197–198, 862–867. [Google Scholar] [CrossRef]
- Gontad, F.; Lorusso, A.; Klini, A.; Manousaki, A.; Perrone, A.; Fotakis, C. Growth of poly-crystalline Cu films on Y substrates by picosecond pulsed laser deposition for photocathode applications. Nucl. Instrum. Methods Phys. Res. Sect. A 2015, 799, 70–74. [Google Scholar] [CrossRef]
- Preuss, S.; Demchuk, A.; Stuke, M. Sub-picosecond UV laser ablation of metals. Appl. Phys. A 1995, 61, 33–37. [Google Scholar] [CrossRef]
- Weaver, I.; Lewis, C.L.S. Polar distribution of ablated atomic material during the pulsed laser deposition of Cu in vacuum: Dependence on focused laser spot size and power density. J. Appl. Phys. 1996, 79, 7216–7222. [Google Scholar] [CrossRef]
- Eliezer, S.; Eliaz, N.; Grossman, E.; Fisher, D.; Gouzman, I.; Henis, Z.; Pecker, S.; Horovitz, Y.; Fraenkel, M.; Maman, S.; et al. Synthesis of nanoparticles with femtosecond laser pulses. Phys. Rev. B 2004, 69, 144119. [Google Scholar] [CrossRef]
- Singh, R.K.; Narayan, J. Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model. Phys. Rev. B 1990, 41, 8843–8859. [Google Scholar] [CrossRef] [PubMed]
- Teubner, U.; Uschmann, I.; Gibbon, P.; Altenbernd, D.; Förster, E.; Feurer, T.; Theobald, W.; Sauerbrey, R.; Hirst, G.; Key, M.; et al. Absorption and hot electron production by high intensity femtosecond uv-laser pulses in solid targets. Phys. Rev. E 1996, 54, 4167–4177. [Google Scholar] [CrossRef] [PubMed]
- Tóth, Z.; Hopp, B.; Klebniczki, J.; Kresz, N.; Bor, Z.; Anglos, D.; Kalpouzos, C.; Fotakis, C. Expansion velocities of 0.5 ps KrF excimer laser induced plasma by Doppler-shift analysis of pump and probe measurements. Appl. Phys. A 2004, 79, 1287–1290. [Google Scholar] [CrossRef]
- Haverkamp, J.; Mayo, R.M.; Bourham, M.A.; Narayan, J.; Jin, C.; Duscher, G. Plasma plume characteristics and properties of pulsed laser deposited diamond-like carbon films. J. Appl. Phys. 2003, 93, 3627–3634. [Google Scholar] [CrossRef]
Lens Position | 1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|---|
Main Pulse | Area (mm2) | 0.085 | 0.21 | 0.34 | 0.59 | 1.01 |
Fluence (J/cm2) | 4.92 | 1.99 | 1.22 | 0.71 | 0.41 | |
Intensity (W/cm2) | 8.2 × 1012 | 3.3 × 1012 | 2.0 × 1012 | 1.2× 1012 | 0.7 × 1012 | |
ASE | Area (mm2) | 0.30 | 0.90 | 1.48 | 2.16 | 3.30 |
Fluence (J/cm2) | 0.037 | 0.012 | 0.0074 | 0.0051 | 0.0033 | |
Intensity (W/cm2) | 4.9 × 106 | 1.6 × 106 | 9.9 × 106 | 6.8 × 106 | 4.4 × 106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorusso, A.; Kovács, Z.; Gilicze, B.; Szatmári, S.; Perrone, A.; Szörényi, T. Sub-ps Laser Deposited Copper Films for Application in RF Guns. Materials 2023, 16, 1267. https://doi.org/10.3390/ma16031267
Lorusso A, Kovács Z, Gilicze B, Szatmári S, Perrone A, Szörényi T. Sub-ps Laser Deposited Copper Films for Application in RF Guns. Materials. 2023; 16(3):1267. https://doi.org/10.3390/ma16031267
Chicago/Turabian StyleLorusso, Antonella, Zsolt Kovács, Barnabás Gilicze, Sándor Szatmári, Alessio Perrone, and Tamás Szörényi. 2023. "Sub-ps Laser Deposited Copper Films for Application in RF Guns" Materials 16, no. 3: 1267. https://doi.org/10.3390/ma16031267
APA StyleLorusso, A., Kovács, Z., Gilicze, B., Szatmári, S., Perrone, A., & Szörényi, T. (2023). Sub-ps Laser Deposited Copper Films for Application in RF Guns. Materials, 16(3), 1267. https://doi.org/10.3390/ma16031267